Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cherrie K. Donawho is active.

Publication


Featured researches published by Cherrie K. Donawho.


Clinical Cancer Research | 2007

ABT-888, an Orally Active Poly(ADP-Ribose) Polymerase Inhibitor that Potentiates DNA-Damaging Agents in Preclinical Tumor Models

Cherrie K. Donawho; Yan Luo; Yanping Luo; Thomas D. Penning; Joy Bauch; Jennifer J. Bouska; Velitchka Bontcheva-Diaz; Bryan F. Cox; Theodore L. DeWeese; Larry E. Dillehay; Debra Ferguson; Nayereh S. Ghoreishi-Haack; David R. Grimm; Ran Guan; Edward K. Han; Rhonda R. Holley-Shanks; Boris Hristov; Kenneth B. Idler; Ken Jarvis; Eric F. Johnson; Lawrence Kleinberg; Vered Klinghofer; Loren M. Lasko; Xuesong Liu; Kennan C. Marsh; Thomas McGonigal; Jonathan A. Meulbroek; Amanda M. Olson; Joann P. Palma; Luis E. Rodriguez

Purpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. Experimental Design:In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. Results: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with Kis of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d × 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. Conclusions: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.


Journal of Medicinal Chemistry | 2009

Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer.

Thomas D. Penning; Gui-Dong Zhu; Viraj B. Gandhi; Jianchun Gong; Xuesong Liu; Yan Shi; Vered Klinghofer; Eric F. Johnson; Cherrie K. Donawho; David J. Frost; Velitchka Bontcheva-Diaz; Jennifer J. Bouska; Donald J. Osterling; Amanda M. Olson; Kennan C. Marsh; Yan Luo; Vincent L. Giranda

We have developed a series of cyclic amine-containing benzimidazole carboxamide PARP inhibitors with a methyl-substituted quaternary center at the point of attachment to the benzimidazole ring system. These compounds exhibit excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of 3a (2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide, ABT-888), currently in human phase I clinical trials. Compound 3a displayed excellent potency against both the PARP-1 and PARP-2 enzymes with a K(i) of 5 nM and in a C41 whole cell assay with an EC(50) of 2 nM. In addition, 3a is aqueous soluble, orally bioavailable across multiple species, and demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide (TMZ) and in an MX-1 breast cancer xenograft model in combination with either carboplatin or cyclophosphamide.


Molecular Cancer Therapeutics | 2006

Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor

Daniel H. Albert; Paul Tapang; Terrance J. Magoc; Lori J. Pease; David R. Reuter; Ru-Qi Wei; Junling Li; Jun Guo; Peter F. Bousquet; Nayereh S. Ghoreishi-Haack; Baole Wang; Gail T. Bukofzer; Yi-Chun Wang; Jason Stavropoulos; Kresna Hartandi; Amanda Niquette; Nirupama B. Soni; Eric F. Johnson; J. Owen McCall; Jennifer J. Bouska; Yanping Luo; Cherrie K. Donawho; Yujia Dai; Patrick A. Marcotte; Keith B. Glaser; Michael R. Michaelides; Steven K. Davidsen

ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 μmol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases. The inhibition profile of ABT-869 is evident in cellular assays of RTK phosphorylation (IC50 = 2, 4, and 7 nmol/L for PDGFR-β, KDR, and CSF-1R, respectively) and VEGF-stimulated proliferation (IC50 = 0.2 nmol/L for human endothelial cells). ABT-869 is not a general antiproliferative agent because, in most cancer cells, >1,000-fold higher concentrations of ABT-869 are required for inhibition of proliferation. However, ABT-869 exhibits potent antiproliferative and apoptotic effects on cancer cells whose proliferation is dependent on mutant kinases, such as FLT3. In vivo ABT-869 is effective orally in the mechanism-based murine models of VEGF-induced uterine edema (ED50 = 0.5 mg/kg) and corneal angiogenesis (>50% inhibition, 15 mg/kg). In tumor growth studies, ABT-869 exhibits efficacy in human fibrosarcoma and breast, colon, and small cell lung carcinoma xenograft models (ED50 = 1.5–5 mg/kg, twice daily) and is also effective (>50% inhibition) in orthotopic breast and glioma models. Reduction in tumor size and tumor regression was observed in epidermoid carcinoma and leukemia xenograft models, respectively. In combination, ABT-869 produced at least additive effects when given with cytotoxic therapies. Based on pharmacokinetic analysis from tumor growth studies, efficacy correlated more strongly with time over a threshold value (cellular KDR IC50 corrected for plasma protein binding = 0.08 μg/mL, ≥7 hours) than with plasma area under the curve or Cmax. These results support clinical assessment of ABT-869 as a therapeutic agent for cancer. [Mol Cancer Ther 2006;5(4):995–1006]


Clinical Cancer Research | 2012

Iniparib Nonselectively Modifies Cysteine-Containing Proteins in Tumor Cells and Is Not a Bona Fide PARP Inhibitor

Xuesong Liu; Yan Shi; David Maag; Joann P. Palma; Melanie Patterson; Paul Ellis; Bruce W. Surber; Damien Ready; Niru B. Soni; Uri S. Ladror; Allison J. Xu; Ramesh Iyer; John E. Harlan; Larry R. Solomon; Cherrie K. Donawho; Thomas D. Penning; Eric F. Johnson; Alexander R. Shoemaker

Purpose: PARP inhibitors are being developed as therapeutic agents for cancer. More than six compounds have entered clinical trials. The majority of these compounds are β-nicotinamide adenine dinucleotide (NAD+)-competitive inhibitors. One exception is iniparib, which has been proposed to be a noncompetitive PARP inhibitor. In this study, we compare the biologic activities of two different structural classes of NAD+-competitive compounds with iniparib and its C-nitroso metabolite. Experimental Design: Two chemical series of NAD+-competitive PARP inhibitors, iniparib and its C-nitroso metabolite, were analyzed in enzymatic and cellular assays. Viability assays were carried out in MDA-MB-436 (BRCA1-deficient) and DLD1−/− (BRCA2-deficient) cells together with BRCA-proficient MDA-MB-231 and DLD1+/+ cells. Capan-1 and B16F10 xenograft models were used to compare iniparib and veliparib in vivo. Mass spectrometry and the 3H-labeling method were used to monitor the covalent modification of proteins. Results: All NAD+-competitive inhibitors show robust activity in a PARP cellular assay, strongly potentiate the activity of temozolomide, and elicit robust cell killing in BRCA-deficient tumor cells in vitro and in vivo. Cell killing was associated with an induction of DNA damage. In contrast, neither iniparib nor its C-nitroso metabolite inhibited PARP enzymatic or cellular activity, potentiated temozolomide, or showed activity in a BRCA-deficient setting. We find that the nitroso metabolite of iniparib forms adducts with many cysteine-containing proteins. Furthermore, both iniparib and its nitroso metabolite form protein adducts nonspecifically in tumor cells. Conclusions: Iniparib nonselectively modifies cysteine-containing proteins in tumor cells, and the primary mechanism of action for iniparib is likely not via inhibition of PARP activity. Clin Cancer Res; 18(2); 510–23. ©2011 AACR.


Clinical Cancer Research | 2009

ABT-888 Confers Broad In vivo Activity in Combination with Temozolomide in Diverse Tumors

Joann P. Palma; Yi-Chun Wang; Luis E. Rodriguez; Debra Montgomery; P. Ellis; Gail Bukofzer; Amanda Niquette; Xuesong Liu; Yan Shi; Loren M. Lasko; Gui-Dong Zhu; Thomas D. Penning; Vincent L. Giranda; Saul H. Rosenberg; David J. Frost; Cherrie K. Donawho

Purpose: ABT-888, currently in phase 2 trials, is a potent oral poly(ADP-ribose) polymerase inhibitor that enhances the activity of multiple DNA-damaging agents, including temozolomide (TMZ). We investigated ABT-888+TMZ combination therapy in multiple xenograft models representing various human tumors having different responses to TMZ. Experimental Design: ABT-888+TMZ efficacy in xenograft tumors implanted in subcutaneous, orthotopic, and metastatic sites was assessed by tumor burden, expression of poly(ADP-ribose) polymer, and O6-methylguanine methyltransferase (MGMT). Results: Varying levels of ABT-888+TMZ sensitivity were evident across a broad histologic spectrum of models (55-100% tumor growth inhibition) in B-cell lymphoma, small cell lung carcinoma, non–small cell lung carcinoma, pancreatic, ovarian, breast, and prostate xenografts, including numerous regressions. Combination efficacy in otherwise TMZ nonresponsive tumors suggests that TMZ resistance may be overcome by poly(ADP-ribose) polymerase inhibition. Profound ABT-888+TMZ efficacy was seen in experimental metastases models that acquired resistance to TMZ. Moreover, TMZ resistance was overcome in crossover treatments, indicating that combination therapy may overcome acquired TMZ resistance. Neither tumor MGMT, mismatch repair, nor poly(ADP-ribose) polymer correlated with the degree of sensitivity to ABT-888+TMZ. Conclusions: Robust ABT-888+TMZ efficacy is observed across a spectrum of tumor types, including orthotopic and metastatic implantation. As many TMZ nonresponsive tumors proved sensitive to ABT-888+TMZ, this novel combination may broaden the clinical use of TMZ beyond melanoma and glioma. Although TMZ resistance may be influenced by MGMT, neither MGMT nor other mechanisms of TMZ resistance (mismatch repair) precluded sensitivity to ABT-888+TMZ. Underlying mechanisms of TMZ resistance in these models are not completely understood but likely involve mechanisms independent of MGMT.(Clin Cancer Res 2009;15(23):7277–90)


Journal of Medicinal Chemistry | 2009

Synthesis and evaluation of a new generation of orally efficacious benzimidazole-based poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents.

Yunsong Tong; Jennifer J. Bouska; Paul A. Ellis; Eric F. Johnson; Joel D. Leverson; Xuesong Liu; Patrick A. Marcotte; Amanda M. Olson; Donald J. Osterling; Magdalena Przytulinska; Luis E. Rodriguez; Yan Shi; Nirupama B. Soni; Jason Stavropoulos; Sheela A. Thomas; Cherrie K. Donawho; David J. Frost; Yan Luo; Vincent L. Giranda; Thomas D. Penning

Small molecule inhibitors of PARP-1 have been pursued by various organizations as potential therapeutic agents either capable of sensitizing cytotoxic treatments or acting as stand-alone agents to combat cancer. As one of the strategies to expand our portfolio of PARP-1 inhibitors, we pursued unsaturated heterocycles to replace the saturated cyclic amine derivatives appended to the benzimidazole core. Not only did a variety of these new generation compounds maintain high enzymatic potency, many of them also displayed robust cellular activity. For example, the enzymatic IC(50) and cellular EC(50) values were as low as 1 nM or below. Compounds 24 (EC(50) = 3.7 nM) and 44 (EC(50) = 7.8 nM), featuring an oxadiazole and a pyridine moiety, respectively, demonstrated balanced potency and PK profiles. In addition, these two molecules exhibited potent oral in vivo efficacy in potentiating the cytotoxic agent temozolomide in a B16F10 murine melanoma model.


Molecular Cancer Research | 2008

Potentiation of temozolomide cytotoxicity by poly(ADP)ribose polymerase inhibitor ABT-888 requires a conversion of single-stranded DNA damages to double-stranded DNA breaks.

Xuesong Liu; Yan Shi; Ran Guan; Cherrie K. Donawho; Yanping Luo; Joann P. Palma; Gui-Dong Zhu; Eric F. Johnson; Luis E. Rodriguez; Nayereh S. Ghoreishi-Haack; Ken Jarvis; Vincent P. Hradil; Milagros Colon-Lopez; Bryan F. Cox; Vered Klinghofer; Thomas D. Penning; Saul H. Rosenberg; David J. Frost; Vincent L. Giranda; Yan Luo

Poly(ADP-ribose) polymerase (PARP) senses DNA breaks and facilitates DNA repair via the polyADP-ribosylation of various DNA binding and repair proteins. We explored the mechanism of potentiation of temozolomide cytotoxicity by the PARP inhibitor ABT-888. We showed that cells treated with temozolomide need to be exposed to ABT-888 for at least 17 to 24 hours to achieve maximal cytotoxicity. The extent of cytotoxicity correlates with the level of double-stranded DNA breaks as indicated by γH2AX levels. In synchronized cells, damaging DNA with temozolomide in the presence of ABT-888 during the S phase generated high levels of double-stranded breaks, presumably because the single-stranded DNA breaks resulting from the cleavage of the methylated nucleotides were converted into double-stranded breaks through DNA replication. As a result, treatment of temozolomide and ABT-888 during the S phase leads to higher levels of cytotoxicity. ABT-888 inhibits poly(ADP-ribose) formation in vivo and enhances tumor growth inhibition by temozolomide in multiple models. ABT-888 is well tolerated in animal models. ABT-888 is currently in clinical trials in combination with temozolomide. (Mol Cancer Res 2008;6(10):1621–9)


Bioorganic & Medicinal Chemistry | 2008

Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer

Thomas D. Penning; Gui-Dong Zhu; Viraj B. Gandhi; Jianchun Gong; Sheela A. Thomas; Wilfried Lubisch; Roland Grandel; Wolfgang Wernet; Chang H. Park; Elizabeth H. Fry; Xuesong Liu; Yan Shi; Vered Klinghofer; Eric F. Johnson; Cherrie K. Donawho; David J. Frost; Velitchka Bontcheva-Diaz; Jennifer J. Bouska; Amanda M. Olson; Kennan C. Marsh; Yan Luo; Saul H. Rosenberg; Vincent L. Giranda

We have developed a series of cyclic amine-containing benzimidazole carboxamide poly(ADP-ribose)polymerase (PARP) inhibitors, with good PARP-1 enzyme potency, as well as cellular potency. These efforts led to the identification of a lead preclinical candidate, 10b, 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide (A-620223). 10b displayed very good potency against both the PARP-1 enzyme with a K(i) of 8nM and in a whole cell assay with an EC(50) of 3nM. 10b is aqueous soluble, orally bioavailable across multiple species, and demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide (TMZ) and in an MX-1 breast xenograph model in combination with cisplatin.


Molecular Cancer Research | 2015

Mechanistic Dissection of PARP1 Trapping and the Impact on in vivo Tolerability and Efficacy of PARP Inhibitors

Todd A. Hopkins; Yan Shi; Luis E. Rodriguez; Larry R. Solomon; Cherrie K. Donawho; Enrico L. Digiammarino; Sanjay C. Panchal; Julie L. Wilsbacher; Wenqing Gao; Amanda M. Olson; DeAnne Stolarik; Donald J. Osterling; Eric F. Johnson; David Maag

Poly(ADP-ribose) polymerases (PARP1, -2, and -3) play important roles in DNA damage repair. As such, a number of PARP inhibitors are undergoing clinical development as anticancer therapies, particularly in tumors with DNA repair deficits and in combination with DNA-damaging agents. Preclinical evidence indicates that PARP inhibitors potentiate the cytotoxicity of DNA alkylating agents. It has been proposed that a major mechanism underlying this activity is the allosteric trapping of PARP1 at DNA single-strand breaks during base excision repair; however, direct evidence of allostery has not been reported. Here the data reveal that veliparib, olaparib, niraparib, and talazoparib (BMN-673) potentiate the cytotoxicity of alkylating agents. Consistent with this, all four drugs possess PARP1 trapping activity. Using biochemical and cellular approaches, we directly probe the trapping mechanism for an allosteric component. These studies indicate that trapping is due to catalytic inhibition and not allostery. The potency of PARP inhibitors with respect to trapping and catalytic inhibition is linearly correlated in biochemical systems but is nonlinear in cells. High-content imaging of γH2Ax levels suggests that this is attributable to differential potentiation of DNA damage in cells. Trapping potency is inversely correlated with tolerability when PARP inhibitors are combined with temozolomide in mouse xenograft studies. As a result, PARP inhibitors with dramatically different trapping potencies elicit comparable in vivo efficacy at maximum tolerated doses. Finally, the impact of trapping on tolerability and efficacy is likely to be context specific. Implications: Understanding the context-specific relationships of trapping and catalytic inhibition with both tolerability and efficacy will aid in determining the suitability of a PARP inhibitor for inclusion in a particular clinical regimen. Mol Cancer Res; 13(11); 1465–77. ©2015 AACR.


Journal of Medicinal Chemistry | 2010

Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor

Thomas D. Penning; Gui-Dong Zhu; Jianchun Gong; Sheela A. Thomas; Viraj B. Gandhi; Xuesong Liu; Yan Shi; Vered Klinghofer; Eric F. Johnson; Chang H. Park; Elizabeth H. Fry; Cherrie K. Donawho; David J. Frost; Fritz G. Buchanan; Gail Bukofzer; Luis E. Rodriguez; Velitchka Bontcheva-Diaz; Jennifer J. Bouska; Donald J. Osterling; Amanda M. Olson; Kennan C. Marsh; Yan Luo; Vincent L. Giranda

We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K(i) of 1 nM and an EC(50) of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.

Collaboration


Dive into the Cherrie K. Donawho's collaboration.

Top Co-Authors

Avatar

Eric F. Johnson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Shi

Southern Methodist University

View shared research outputs
Top Co-Authors

Avatar

Xuesong Liu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Margaret L. Kripke

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith B. Glaser

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Paul Tapang

University of California

View shared research outputs
Top Co-Authors

Avatar

Junling Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Patrick A. Marcotte

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge