Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheryl A. Kerfeld is active.

Publication


Featured researches published by Cheryl A. Kerfeld.


Nature | 2009

A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.

Dongying Wu; Philip Hugenholtz; Konstantinos Mavromatis; Rüdiger Pukall; Eileen Dalin; Natalia Ivanova; Victor Kunin; Lynne Goodwin; Martin Wu; Brian J. Tindall; Sean D. Hooper; Amrita Pati; Athanasios Lykidis; Stefan Spring; Iain Anderson; Patrik D’haeseleer; Adam Zemla; Alla Lapidus; Matt Nolan; Alex Copeland; Cliff Han; Feng Chen; Jan-Fang Cheng; Susan Lucas; Cheryl A. Kerfeld; Elke Lang; Sabine Gronow; Patrick Chain; David Bruce; Edward M. Rubin

Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic ‘phylogenomic’ efforts to compile a phylogeny-driven ‘Genomic Encyclopedia of Bacteria and Archaea’ in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.


The Plant Cell | 2006

A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria

Adjélé Wilson; Ghada Ajlani; Jean-Marc Verbavatz; Imre Vass; Cheryl A. Kerfeld; Diana Kirilovsky

Photosynthetic organisms have developed multiple protective mechanisms to survive under high-light conditions. In plants, one of these mechanisms is the thermal dissipation of excitation energy in the membrane-bound chlorophyll antenna of photosystem II. The question of whether or not cyanobacteria, the progenitor of the chloroplast, have an equivalent photoprotective mechanism has long been unanswered. Recently, however, evidence was presented for the possible existence of a mechanism dissipating excess absorbed energy in the phycobilisome, the extramembrane antenna of cyanobacteria. Here, we demonstrate that this photoprotective mechanism, characterized by blue light–induced fluorescence quenching, is indeed phycobilisome-related and that a soluble carotenoid binding protein, ORANGE CAROTENOID PROTEIN (OCP), encoded by the slr1963 gene in Synechocystis PCC 6803, plays an essential role in this process. Blue light is unable to quench fluorescence in the absence of phycobilisomes or OCP. The fluorescence quenching is not ΔpH-dependent, and it can be induced in the absence of the reaction center II or the chlorophyll antenna, CP43 and CP47. Our data suggest that OCP, which strongly interacts with the thylakoids, acts as both the photoreceptor and the mediator of the reduction of the amount of energy transferred from the phycobilisomes to the photosystems. These are novel roles for a soluble carotenoid protein.


Nature Reviews Microbiology | 2008

Protein-based organelles in bacteria: carboxysomes and related microcompartments

Todd O. Yeates; Cheryl A. Kerfeld; Sabine Heinhorst; Gordon C. Cannon; Jessup M. Shively

Many bacteria contain intracellular microcompartments with outer shells that are composed of thousands of protein subunits and interiors that are filled with functionally related enzymes. These microcompartments serve as organelles by sequestering specific metabolic pathways in bacterial cells. The carboxysome, a prototypical bacterial microcompartment that is found in cyanobacteria and some chemoautotrophs, encapsulates ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase, and thereby enhances carbon fixation by elevating the levels of CO2 in the vicinity of RuBisCO. Evolutionarily related, but functionally distinct, microcompartments are present in diverse bacteria. Although bacterial microcompartments were first observed more than 40 years ago, a detailed understanding of how they function is only now beginning to emerge.


Structure | 2003

The Crystal Structure of a Cyanobacterial Water-Soluble Carotenoid Binding Protein

Cheryl A. Kerfeld; Michael R. Sawaya; Vishnu Brahmandam; Duilio Cascio; Kwok Ki Ho; Colleen C. Trevithick-Sutton; David W. Krogmann; Todd O. Yeates

Carotenoids undergo a wide range of photochemical reactions in animal, plant, and microbial systems. In photosynthetic organisms, in addition to light harvesting, they perform an essential role in protecting against light-induced damage by quenching singlet oxygen, superoxide anion radicals, or triplet-state chlorophyll. We have determined the crystal structure of a water-soluble orange carotenoid protein (OCP) isolated from the cyanobacterium Arthrospira maxima at a resolution of 2.1 A. OCP forms a homodimer with one carotenoid molecule per monomer. The carotenoid binding site is lined by a striking number of methionine residues. The structure reveals several possible ways in which the protein environment influences the spectral properties of the pigment and provides insight into how the OCP carries out its putative functions in photoprotection.


PLOS Biology | 2006

The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2.

Kathleen M. Scott; Stefan M. Sievert; Fereniki N. Abril; Lois A. Ball; Chantell J. Barrett; Rodrigo A. Blake; Amanda J. Boller; Patrick Chain; Justine Clark; Carisa R. Davis; Chris Detter; Kimberly F. Do; Kimberly P. Dobrinski; Brandon I. Faza; Kelly A. Fitzpatrick; Sharyn K. Freyermuth; Tara L. Harmer; Loren Hauser; Michael Hügler; Cheryl A. Kerfeld; Martin G. Klotz; William Kong; Miriam Land; Alla Lapidus; Frank W. Larimer; Dana L. Longo; Susan Lucas; Stephanie Malfatti; Steven E. Massey; Darlene D. Martin

Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.


The Plant Cell | 2007

Light-Induced Energy Dissipation in Iron-Starved Cyanobacteria: Roles of OCP and IsiA Proteins

Adjélé Wilson; Clémence Boulay; Annegret Wilde; Cheryl A. Kerfeld; Diana Kirilovsky

In response to iron deficiency, cyanobacteria synthesize the iron stress–induced chlorophyll binding protein IsiA. This protein protects cyanobacterial cells against iron stress. It has been proposed that the protective role of IsiA is related to a blue light–induced nonphotochemical fluorescence quenching (NPQ) mechanism. In iron-replete cyanobacterial cell cultures, strong blue light is known to induce a mechanism that dissipates excess absorbed energy in the phycobilisome, the extramembranal antenna of cyanobacteria. In this photoprotective mechanism, the soluble Orange Carotenoid Protein (OCP) plays an essential role. Here, we demonstrate that in iron-starved cells, blue light is unable to quench fluorescence in the absence of the phycobilisomes or the OCP. By contrast, the absence of IsiA does not affect the induction of fluorescence quenching or its recovery. We conclude that in cyanobacteria grown under iron starvation conditions, the blue light–induced nonphotochemical quenching involves the phycobilisome OCP–related energy dissipation mechanism and not IsiA. IsiA, however, does seem to protect the cells from the stress generated by iron starvation, initially by increasing the size of the photosystem I antenna. Subsequently, the IsiA converts the excess energy absorbed by the phycobilisomes into heat through a mechanism different from the dynamic and reversible light-induced NPQ processes.


PLOS Biology | 2007

Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome

Yingssu Tsai; Michael R. Sawaya; Gordon C. Cannon; Fei Cai; Eric B. Williams; Sabine Heinhorst; Cheryl A. Kerfeld; Todd O. Yeates

The carboxysome is a bacterial organelle that functions to enhance the efficiency of CO2 fixation by encapsulating the enzymes ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. The outer shell of the carboxysome is reminiscent of a viral capsid, being constructed from many copies of a few small proteins. Here we describe the structure of the shell protein CsoS1A from the chemoautotrophic bacterium Halothiobacillus neapolitanus. The CsoS1A protein forms hexameric units that pack tightly together to form a molecular layer, which is perforated by narrow pores. Sulfate ions, soaked into crystals of CsoS1A, are observed in the pores of the molecular layer, supporting the idea that the pores could be the conduit for negatively charged metabolites such as bicarbonate, which must cross the shell. The problem of diffusion across a semiporous protein shell is discussed, with the conclusion that the shell is sufficiently porous to allow adequate transport of small molecules. The molecular layer formed by CsoS1A is similar to the recently observed layers formed by cyanobacterial carboxysome shell proteins. This similarity supports the argument that the layers observed represent the natural structure of the facets of the carboxysome shell. Insights into carboxysome function are provided by comparisons of the carboxysome shell to viral capsids, and a comparison of its pores to the pores of transmembrane protein channels.


Photosynthesis Research | 2004

Structure and Function of the Water-Soluble Carotenoid-Binding Proteins of Cyanobacteria

Cheryl A. Kerfeld

The orange carotenoid protein (OCP) and its derivative, the red carotenoid protein (RCP), appear to play important photoprotective roles in cyanobacteria. Structural and functional characterization is gradually elucidating the specific details of how carotenoid-protein interactions, including the role of six methionine residues oriented toward the pigment, contribute to the spectral and functional properties of these proteins.


Biochemical Society Transactions | 2007

Self-assembly in the carboxysome: a viral capsid-like protein shell in bacterial cells

Todd O. Yeates; Yingssu Tsai; Shiho Tanaka; Michael R. Sawaya; Cheryl A. Kerfeld

Many proteins self-assemble to form large supramolecular complexes. Numerous examples of these structures have been characterized, ranging from spherical viruses to tubular protein assemblies. Some new kinds of supramolecular structures are just coming to light, while it is likely there are others that have not yet been discovered. The carboxysome is a subcellular structure that has been known for more than 40 years, but whose structural and functional details are just now emerging. This giant polyhedral body is constructed as a closed shell assembled from several thousand protein subunits. Within this protein shell, the carboxysome encapsulates the CO(2)-fixing enzymes, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbonic anhydrase; this arrangement enhances the efficiency of cellular CO(2) fixation. The carboxysome is present in many photosynthetic and chemoautotrophic bacteria, and so plays an important role in the global carbon cycle. It also serves as the prototypical member of what appears to be a large class of primitive protein-based organelles in bacteria. A series of crystal structures is beginning to reveal the secrets of how the carboxysome is assembled and how it enhances the efficiency of CO(2) fixation. Some of the assembly principles revealed in the carboxysome are reminiscent of those seen in icosahedral viral capsids. In addition, the shell appears to be perforated by pores for metabolite transport into and out of the carboxysome, suggesting comparisons to the pores through oligomeric transmembrane proteins, which serve to transport small molecules across the membrane bilayers of cells and eukaryotic organelles.


RNA Biology | 2013

Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria.

Fei Cai; Seth D. Axen; Cheryl A. Kerfeld

Members of the phylum Cyanobacteria inhabit ecologically diverse environments. However, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR associated genes), an extremely adaptable defense system, has not been surveyed in this phylum. We analyzed 126 cyanobacterial genomes and, surprisingly, found CRISPR-Cas in the majority except the marine subclade (Synechococcus and Prochlorococcus), in which cyanophages are a known force shaping their evolution. Multiple observations of CRISPR loci in the absence of cas1/cas2 genes may represent an early stage of losing a CRISPR-Cas locus. Our findings reveal the widespread distribution of their role in the phylum Cyanobacteria and provide a first step to systematically understanding CRISPR-Cas systems in cyanobacteria.

Collaboration


Dive into the Cheryl A. Kerfeld's collaboration.

Top Co-Authors

Avatar

Todd O. Yeates

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiho Tanaka

University of California

View shared research outputs
Top Co-Authors

Avatar

Diana Kirilovsky

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Cheryl Chan

University of California

View shared research outputs
Top Co-Authors

Avatar

Duilio Cascio

University of California

View shared research outputs
Top Co-Authors

Avatar

Fei Cai

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Lucas

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge