Cheryl A. Whistler
University of New Hampshire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheryl A. Whistler.
Applied and Environmental Microbiology | 2000
Cheryl A. Whistler; Virginia O. Stockwell; Joyce E. Loper
ABSTRACT Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses plant pathogens due in part to its production of the antibiotic pyoluteorin. Previous characterization of Pf-5 revealed three global regulators, including the stationary-phase sigma factor ςS and the two-component regulators GacA and GacS, that influence both antibiotic production and stress response. In this report, we describe the serine protease Lon as a fourth global regulator influencing these phenotypes in Pf-5. lon mutants overproduced pyoluteorin, transcribed pyoluteorin biosynthesis genes at enhanced levels, and were more sensitive to UV exposure than Pf-5. Thelon gene was preceded by sequences that resembled promoters recognized by the heat shock sigma factor ς32(ςH) of Escherichia coli, and Lon accumulation by Pf-5 increased after heat shock. Therefore, ςH represents the third sigma factor (with ςS and ς70) implicated in the regulation of antibiotic production by P. fluorescens. Lon protein levels were similar in stationary-phase and exponentially growing cultures of Pf-5 and were not positively affected by the global regulator ςS or GacS. The association of antibiotic production and stress response has practical implications for the success of disease suppression in the soil environment, where biological control organisms such as Pf-5 are likely to encounter environmental stresses.
Journal of Bacteriology | 2003
Cheryl A. Whistler; Edward G. Ruby
The GacS/GacA two-component system regulates the expression of bacterial traits during host association. Although the importance of GacS/GacA as a regulator of virulence is well established, its role in benign associations is not clear, as mutations in either the gacS or gacA gene have little impact on the success of colonization in nonpathogenic associations studied thus far. Using as a model the symbiotic association of the bioluminescent marine bacterium Vibrio fischeri with its animal host, the Hawaiian bobtail squid, Euprymna scolopes, we investigated the role of GacA in this beneficial animal-microbe interaction. When grown in culture, gacA mutants were defective in several traits important for symbiosis, including luminescence, growth in defined media, growth yield, siderophore activity, and motility. However, gacA mutants were not deficient in production of acylated homoserine lactone signals or catalase activity. The ability of the gacA mutants to initiate squid colonization was impaired but not abolished, and they reached lower-than-wild-type population densities within the host light organ. In contrast to their dark phenotype in culture, gacA mutants that reached population densities above the luminescence detection limit had normal levels of luminescence per bacterial cell in squid light organs, indicating that GacA is not required for light production within the host. The gacA mutants were impaired at competitive colonization and could only successfully cocolonize squid light organs when present in the seawater at higher inoculum densities than wild-type bacteria. Although severely impaired during colonization initiation, gacA mutants were not displaced by the wild-type strain in light organs that were colonized with both strains. This study establishes the role of GacA as a regulator of a beneficial animal-microbe association and indicates that GacA regulates utilization of growth substrates as well as other colonization traits.
Journal of Bacteriology | 2003
Cheryl A. Whistler; Leland S. Pierson
Pseudomonas aureofaciens strain 30-84 is a biological control bacterium that utilizes a two-component GacS/GacA regulatory system interconnected with the PhzR/PhzI quorum sensing system to positively regulate biosynthesis of phenazine antibiotics that contribute to its association with plant hosts. To date, no negative regulators of phenazine production have been identified, nor has the role of repression been studied. Here we describe a novel repressor of secondary metabolism in P. aureofaciens strain 30-84, RpeA, whose deduced amino acid sequence is similar to those of a group of putative two-component regulatory systems of unknown function found in several animal and plant-pathogenic bacteria. In minimal medium where phenazine production is very low, inactivation of the rpeA gene enhanced phenazine biosynthetic gene expression and increased phenazine production but did not increase quorum sensing signal accumulation. Furthermore, RpeA functioned to block phenazine biosynthetic gene transcription in minimal medium even when quorum-sensing signals were at a level that was sufficient for induction of phenazine gene expression in rich medium. Additionally, in the absence of rpeA, the quorum sensor PhzR was not required for phenazine production. Although repression plays a critical role in phenazine regulation, the rpeA mutation could not bypass the requirement for a functional GacS/GacA system, demonstrating that activation is required even in the absence of the RpeA repressor. This study reinforces that multiple signals, including nutrition and population density, are integrated to control the appropriate expression of phenazine antibiotics.
Proceedings of the National Academy of Sciences of the United States of America | 2014
John F. Brooks; Mattias C. Gyllborg; David C. Cronin; Sarah J. Quillin; Celeste A. Mallama; Randi L. Foxall; Cheryl A. Whistler; Andrew L. Goodman; Mark J. Mandel
Significance Animals form associations with bacteria that play important roles in host development and fitness. The mechanisms by which animals horizontally acquire their bacterial partners from the environment are poorly understood. To address this question, we take advantage of a natural symbiosis between the luminous Gram-negative bacterium Vibrio fischeri and its squid host, Euprymna scolopes. We applied the insertion sequencing global approach and identified 380 colonization determinants in V. fischeri. Characterization of the factors revealed novel biofilm regulation and beneficial colonization factors at the cell envelope. To our knowledge, our study is the first global functional analysis in V. fischeri and expands opportunities for systems biology approaches at the host microbe interface in a valuable reductionist model of microbiota colonization. Animal epithelial tissue becomes reproducibly colonized by specific environmental bacteria. The bacteria (microbiota) perform critical functions for the host’s tissue development, immune system development, and nutrition; yet the processes by which bacterial diversity in the environment is selected to assemble the correct communities in the host are unclear. To understand the molecular determinants of microbiota selection, we examined colonization of a simplified model in which the light organ of Euprymna scolopes squid is colonized exclusively by Vibrio fischeri bacteria. We applied high-throughput insertion sequencing to identify which bacterial genes are required during host colonization. A library of over 41,000 unique transposon insertions was analyzed before and after colonization of 1,500 squid hatchlings. Mutants that were reproducibly depleted following squid colonization represented 380 genes, including 37 that encode known colonization factors. Validation of select mutants in defined competitions against the wild-type strain identified nine mutants that exhibited a reproducible colonization defect. Some of the colonization factors identified included genes predicted to influence copper regulation and secretion. Other mutants exhibited defects in biofilm development, which is required for aggregation in host mucus and initiation of colonization. Biofilm formation in culture and in vivo was abolished in a strain lacking the cytoplasmic chaperone DnaJ, suggesting an important role for protein quality control during the elaboration of bacterial biofilm in the context of an intact host immune system. Overall these data suggest that cellular stress responses and biofilm regulation are critical processes underlying the reproducible colonization of animal hosts by specific microbial symbionts.
Mbio | 2013
Elizabeth A. C. Heath-Heckman; Suzanne M. Peyer; Cheryl A. Whistler; Michael A. Apicella; William E. Goldman; Margaret J. McFall-Ngai
ABSTRACT The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut. IMPORTANCE In mammals, biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes are affected by the diverse resident microbiota, the extent to which these microbial communities control or are controlled by these rhythms has not been addressed. This study provides evidence that the presentation of three bacterial products (lipid A, peptidoglycan monomer, and blue light) is required for cyclic expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can directly influence the transcription of a gene encoding a protein implicated in the entrainment of circadian rhythms provides the first evidence for the role of bacterial symbionts in influencing, and perhaps driving, peripheral circadian oscillators in the host. In mammals, biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes are affected by the diverse resident microbiota, the extent to which these microbial communities control or are controlled by these rhythms has not been addressed. This study provides evidence that the presentation of three bacterial products (lipid A, peptidoglycan monomer, and blue light) is required for cyclic expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can directly influence the transcription of a gene encoding a protein implicated in the entrainment of circadian rhythms provides the first evidence for the role of bacterial symbionts in influencing, and perhaps driving, peripheral circadian oscillators in the host.
Cellular Microbiology | 2007
Cheryl A. Whistler; Tanya A. Koropatnick; Amber Pollack; Margaret J. McFall-Ngai; Edward G. Ruby
Harmful and beneficial bacterium–host interactions induce similar host‐tissue changes that lead to contrasting outcomes of association. A life‐long association between Vibrio fischeri and the light organ of its host Euprymna scolopes begins when the squid collects bacteria from the surrounding seawater using mucus secreted from ciliated epithelial appendages. Following colonization, the bacterium causes changes in host tissue including cessation of mucus shedding, and apoptosis and regression of the appendages that may limit additional bacterial interactions. We evaluated whether delivery of morphogenic signals is influenced by GacA, a virulence regulator in pathogens, which also influences squid‐colonization by V. fischeri. Low‐level colonization by a GacA mutant led to regression of the ciliated appendages. However, the GacA mutant did not induce cessation of mucus shedding, nor did it trigger apoptosis in the appendages, a phenotype that normally correlates with their regression. Because apoptosis is triggered by lipopolysaccharide, we examined the GacA mutant and determined that it had an altered lipopolysaccharide profile as well as an increased sensitivity to detergents. GacA‐mutant‐colonized animals were highly susceptible to invasion by secondary colonizers, suggesting that the GacA mutants inability to signal the full programme of light‐organ responses permitted the prolonged recruitment of additional symbionts.
Applied and Environmental Microbiology | 2011
Brian M. Schuster; Anna L. Tyzik; Rachel A. Donner; Megan J. Striplin; Salvadore Almagro-Moreno; Stephen H. Jones; Vaughn S. Cooper; Cheryl A. Whistler
ABSTRACT Although Vibrio cholerae is an important human pathogen, little is known about its populations in regions where the organism is endemic but where cholera disease is rare. A total of 31 independent isolates confirmed as V. cholerae were collected from water, sediment, and oysters in 2008 and 2009 from the Great Bay Estuary (GBE) in New Hampshire, a location where the organism has never been detected. Environmental analyses suggested that abundance correlates most strongly with rainfall events, as determined from data averaged over several days prior to collection. Phenotyping, genotyping, and multilocus sequence analysis (MLSA) revealed a highly diverse endemic population, with clones recurring in both years. Certain isolates were closely related to toxigenic O1 strains, yet no virulence genes were detected. Multiple statistical tests revealed evidence of recombination among strains that contributed to allelic diversity equally as mutation. This relatively isolated population discovered on the northern limit of detection for V. cholerae can serve as a model of natural population dynamics that augments predictive models for disease emergence.
Applied and Environmental Microbiology | 2012
Crystal N. Ellis; Brian M. Schuster; Megan J. Striplin; Stephen H. Jones; Cheryl A. Whistler; Vaughn S. Cooper
ABSTRACT Risk of gastric infection with Vibrio parahaemolyticus increases with favorable environmental conditions and population shifts that increase prevalence of infective strains. Genetic analysis of New Hampshire strains revealed a unique population with some isolates similar to outbreak-causing strains and high-level diversity that increased as waters warmed.
Symbiosis | 2010
Brian M. Schuster; Lauren A. Perry; Vaughn S. Cooper; Cheryl A. Whistler
Although most Vibrio fischeri isolates are capable of symbiosis, the coevolution of certain strains with the Hawaiian bobtail squid, Euprymna scolopes, has led to specific adaptation to this partnership. For instance, strains from different hosts or from a planktonic environment are ineffective squid colonists. Even though bioluminescence is a symbiotic requirement, curiously, symbionts of E. scolopes are dim in culture relative to fish symbionts and free-living isolates. It is unclear whether this dim phenotype is related to the symbiosis or simply coincidental. To further explore the basis of symbiont specificity, we developed an experimental evolution model that utilizes the daily light organ venting behavior of the squid and horizontal acquisition of symbionts for serial passage of cultures. We passaged six populations each derived from the squid-naïve strains of V. fischeri MJ11 (a fish symbiont) and WH1 (a free-living isolate) through a series of juvenile squid light organs. After 15 serially colonized squid for each population, or an estimated 290–360 bacterial generations, we isolated representatives of the light organ populations and characterized their bioluminescence. Multiple evolved lines of both strains produced significantly less bioluminescence both in vitro and in vivo. This reduction in bioluminescence did not correlate with reduced quorum sensing for most isolates tested. The remarkable phenotypic convergence with squid symbionts further emphasizes the importance of bioluminescence in this symbiosis, and suggests that reduced light production is a specific adaptation to the squid.
Frontiers in Microbiology | 2015
Feng Xu; Saba Ilyas; Jeffrey A. Hall; Stephen H. Jones; Vaughn S. Cooper; Cheryl A. Whistler
Gastric infections caused by the environmentally transmitted pathogen, Vibrio parahaemolyticus, have increased over the last two decades, including in many parts of the United States (US). However, until recently, infections linked to shellfish from the cool northeastern US waters were rare. Cases have risen in the Northeast, consistent with changes in local V. parahaemolyticus populations toward greater abundance or a shift in constituent pathogens. We examined 94 clinical isolates from a period of increasing disease in the region and compared them to 200 environmental counterparts to identify resident and non-indigenous lineages and to gain insight into the emergence of pathogenic types. Genotyping and multi-locus sequence analysis (MLSA) of clinical isolates collected from 2010 to 2013 in Massachusetts, New Hampshire, and Maine revealed their polyphyletic nature. Although 80% of the clinical isolates harbored the trh hemolysin either alone or with tdh, and were urease positive, 14% harbored neither hemolysin exposing a limitation for these traits in pathogen detection. Resident sequence type (ST) 631 strains caused seven infections, and show a relatively recent history of recombination with other clinical and environmental lineages present in the region. ST34 and ST674 strains were each linked to a single infection and these strain types were also identified from the environment as isolates harboring hemolysin genes. Forty-two ST36 isolates were identified from the clinical collection, consistent with reports that this strain type caused a rise in regional infections starting in 2012. Whole-genome phylogenies that included three ST36 outbreak isolates traced to at least two local sources demonstrated that the US Atlantic coastal population of this strain type was indeed derived from the Pacific population. This study lays the foundation for understanding dynamics within natural populations associated with emergence and invasion of pathogenic strain types in the region.