Cheryl Chung
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheryl Chung.
Comprehensive Reviews in Food Science and Food Safety | 2014
Brian Degner; Cheryl Chung; Vicki Schlegel; Robert W. Hutkins; David Julian McClements
Many of the sauces used in frozen meals are oil-in-water emulsions that consist of fat droplets dispersed within an aqueous medium. This type of emulsion must remain physically and chemically stable throughout processing, freezing, storage, and defrosting conditions. Knowledge of the fundamental physicochemical mechanisms responsible for the stability of emulsion-based sauces is needed to design and fabricate high-quality sauces with the desired sensory attributes. This review provides an overview of the current understanding of the influence of freezing and thawing on the stability of oil-in-water emulsions. In particular, it focuses on the influence of product composition (such as emulsifiers, biopolymers, salts, and cryoprotectants), homogenization conditions, and freezing/thawing conditions on the stability of emulsions. The information contained in this review may be useful for optimizing the design of emulsion-based sauces for utilization in commercial food products.
Annual Review of Food Science and Technology - (new in 2010) | 2017
David Julian McClements; Long Bai; Cheryl Chung
Consumer concern about human and environmental health is encouraging food manufacturers to use more natural and sustainable food ingredients. In particular, there is interest in replacing synthetic ingredients with natural ones, and in replacing animal-based ingredients with plant-based ones. This article provides a review of the various types of natural emulsifiers with potential application in the food industry, including phospholipids, biosurfactants, proteins, polysaccharides, and natural colloidal particles. Increased utilization of natural emulsifiers in food products may lead to a healthier and more sustainable food supply. However, more research is needed to identify, isolate, and characterize new sources of commercially viable natural emulsifiers suitable for food use.
Food Chemistry | 2016
Cheryl Chung; Thananunt Rojanasasithara; William Mutilangi; David Julian McClements
This study investigated the potential of gum arabic to improve the stability of anthocyanins that are used in commercial beverages as natural colourants. The degradation of purple carrot anthocyanin in model beverage systems (pH 3.0) containing L-ascorbic acid proceeded with a first-order reaction rate during storage (40 °C for 5 days in light). The addition of gum arabic (0.05-5.0%) significantly enhanced the colour stability of anthocyanin, with the most stable systems observed at intermediate levels (1.5%). A further increase in concentration (>1.5%) reduced its efficacy due to a change in the conformation of the gum arabic molecules that hindered their exposure to the anthocyanins. Fluorescence quenching measurements showed that the anthocyanin could have interacted with the glycoprotein fractions of the gum arabic through hydrogen bonding, resulting in enhanced stability. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using natural ingredients.
Food Chemistry | 2016
Cheryl Chung; Thananunt Rojanasasithara; William Mutilangi; David Julian McClements
Anthocyanins are widely used as natural colorants in foods, but they are highly susceptible to chemical degradation during storage leading to color fading. This study examined the potential of natural quillaja saponin and polyphenols (vanillin, epigallocatechin gallate, green tea extract, and protocatechualdehyde) at inhibiting color fading of anthocyanins in model beverages. The purple carrot anthocyanin (0.025%) in model beverages (citric acid, pH 3.0) containing l-ascorbic acid (0.050%) degraded with a first-order reaction rate during storage (40°C/7days in light). The addition of polyphenols (0.2%) delayed color fading, with the most notable improvement observed with green tea extract addition. The half-life for anthocyanin color fading increased from 2.9 to 6.7days with green tea extract. Fluorescence quenching measurements showed that the green tea extract contained components that interacted with anthocyanins probably through hydrophobic interactions. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using polyphenols.
Food Research International | 2015
Cheryl Chung; Thananunt Rojanasasithara; William Mutilangi; David Julian McClements
Anthocyanins are often used in functional foods and beverages as colorants and nutraceuticals. However, these natural compounds may undergo chemical degradation during storage leading to color fading and loss of bioactivity. In particular, vitamin C (l-ascorbic acid) is known to accelerate anthocyanin degradation. In this study, the influence of various food-grade biopolymers on the physical and chemical stability of model beverages containing anthocyanin (0.025%), ascorbic acid (0 or 0.05%), and calcium salt (0 or 0.01%) was examined under accelerated conditions (40°C for 7days). Four biopolymers (1%) were examined for their potential to inhibit anthocyanin degradation: native whey protein; denatured whey protein; citrus pectin; and beet pectin. The physical stability was determined by measuring changes in absorbance, color, and visual appearance. Solutions containing anthocyanin and calcium salt (0 or 0.01%) were stable throughout storage, while those with added ascorbic acid were the least stable. The addition of biopolymers, particularly heat denatured whey protein, significantly enhanced the stability of the anthocyanin during storage. Fluorescence quenching studies showed that the anthocyanin may have formed complexes with the whey protein through hydrogen bonding that resulted in their enhanced stability in the presence of ascorbic acid. This study provides information that may improve the stability of anthocyanins in food and beverage systems.
Food Chemistry | 2017
Cheryl Chung; Thananunt Rojanasasithara; William Mutilangi; David Julian McClements
Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products.
Food Research International | 2014
Cheryl Chung; Brian Degner; David Julian McClements
The potential of using microparticulated whey protein (MWP) in combination with either modified starch or locust bean gum (LBG) as fat mimetics to fabricate reduced calorie emulsion-based sauces and dressings was studied. The influence of food matrix composition (protein, polysaccharide, and fat content), ionic strength, and pH on the properties of thermally processed model emulsions (90°C/10min) was investigated. Increasing protein concentration (2.5-7.5%) increased the mean (d3,2) particle diameter due to the formation of large protein aggregates. All MWP-containing systems had a creamy white appearance with high lightness (L*>75). Addition of fat droplets (5%) further increased their lightness (L*>90) due to enhanced light scattering. Addition of starch, LBG, or MWP increased emulsion viscosity due to the increased effective volume fraction of the dispersed phase. Addition of calcium chloride (10mM) and pH adjustment (2-8) caused little change in the physicochemical properties of the mixed systems. Overall, the appearance and rheological properties of the mixed systems were similar to commercial sauces and dressings. This study demonstrates that reduced calorie food emulsions with appearance and consistency similar to those of full-fat versions can be formulated using protein microparticles and polysaccharides.
Critical Reviews in Food Science and Nutrition | 2016
Cheryl Chung; Gordon Smith; Brian Degner; David Julian McClements
Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.
Food Research International | 2017
Cheryl Chung; Alexander A. Sher; Philippe Rousset; David Julian McClements
There is a growing demand for use of natural ingredients in food manufacturing. This study utilized a natural emulsifier, quillaja saponin (1%) to fabricate non-dairy model creamer emulsions (containing 10% medium chain triglycerides oil). Varying homogenization conditions, ranging from a high-shear mixer to passing through a microfluidizer at 20,000psi, were applied to fabricate emulsions. The effect of particle size on the appearance, tristimulus color coordinates, and electrical characteristics of the model creamers and white coffee drinks were investigated. The average droplet size varied from 0.2 to 16μm. All model creamers had whitish milk-like appearance and the white coffee solutions had light brown color. All systems were physically stable except for the systems with largest oil droplets (1.8 and 16μm), which had creaming. The lightness, L* (whiteness) of the model creamer and the white coffee increased with decreasing oil droplet size, as smaller droplets scatter more light. Decreasing the oil droplet size led to lower zeta potential (from -73 to -54mV) due to lesser negative charge group accumulated on the interfacial layer of the droplets. The oil droplets were also found to be stable to aggregation in hot acidic coffee solutions prepared using model hard water. Overall, this study found that oil droplets stabilized with natural plant-based surfactant have potential for application in liquid coffee creamers and their stability and whitening power were dependent on the droplet size.
Archive | 2018
Cheryl Chung; David Julian McClements
Abstract The physicochemical properties of nanoemulsions play an important role in determining their functional attributes and suitability for application in commercial products, such as food, supplements, pharmaceutical, or personal care products. In particular, the optical properties (appearance), rheology (texture), and stability (shelf life) of nanoemulsion-based products strongly impact their ability to be used in specific applications. This chapter provides an overview of the different analytical tools available to characterize the optical, stability, and rheological properties of nanoemulsions.