Cheryl Halter
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheryl Halter.
The Lancet | 2005
William C. Nichols; Nathan Pankratz; Dena Hernandez; Coro Paisán-Ruiz; Shushant Jain; Cheryl Halter; Veronika E Michaels; Terry Reed; Alice Rudolph; Clifford W. Shults; Andrew Singleton; Tatiana Foroud
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause some forms of autosomal dominant Parkinsons disease. We measured the frequency of a novel mutation (Gly2019 ser) in familial Parkinsons disease by screening genomic DNA of patients and controls. Of 767 affected individuals from 358 multiplex families, 35 (5%) individuals were either heterozygous (34) or homozygous (one) for the mutation, and had typical clinical findings of idiopathic Parkinsons disease. Thus, our results suggest that a single LRRK2 mutation causes Parkinsons disease in 5% of individuals with familial disease. Screening for this mutation should be a component of genetic testing for Parkinsons disease.
Neurology | 2003
Tatiana Foroud; Sean K. Uniacke; L. Liu; Nathan Pankratz; Alice Rudolph; Cheryl Halter; Clifford W. Shults; Karen Marder; P.M. Conneally; William C. Nichols; Lawrence I. Golbe; William C. Koller; Kelly Lyons; Frederick Marshall; David Oakes; Aileen Shinaman; Eric Siemers; Joanne Wojcieszek; Joann Belden; Julie H. Carter; Richard Camicioli; Pamela Andrews; Magali Fernandez; Jean Hubble; Carson Reider; Ali H. Rajput; Alex Rajput; Theresa Shirley; Michael Panisset; Jean Hall
Background: The vast majority of the parkin mutations previously identified have been found in individuals with juvenile or early onset PD. Previous screening of later onset PD cohorts has not identified substantial numbers of parkin mutations. Methods: Families with at least two siblings with PD were ascertained to identify genes contributing to PD susceptibility. Screening of the parkin gene, by both quantitative PCR and exon sequencing, was performed in those families with either early onset PD (age onset ≤50 years) or positive lod score with a marker in intron 7 of the parkin gene. Results: A total of 25 different mutations in the parkin gene were identified in 103 individuals from 47 families. Mutations were found in both parkin alleles in 41 of the individuals, whereas a single mutation in only one of the two parkin alleles was observed in 62 individuals. Thirty-five of the subjects (34%) with a parkin mutation had an age at onset of 60 years or above with 30 of these 35 (86%) having a detectable mutation on only one parkin allele. Few significant clinical differences were observed among the individuals with two, one, or no mutated copies of the parkin gene. Conclusion: Mutations in the parkin gene occur among individuals with PD with an older age at onset (≥60 years) who have a positive family history of the disease. In addition, the clinical findings of parkin-positive individuals are remarkably similar to those without mutations.
American Journal of Human Genetics | 2002
Nathan Pankratz; William C. Nichols; Sean K. Uniacke; Cheryl Halter; Alice Rudolph; Cliff Shults; P. Michael Conneally; Tatiana Foroud
Parkinson disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity, and postural instability, as well as by a clinically significant response to treatment with levodopa. Mutations in the alpha-synuclein gene have been found to result in autosomal dominant PD, and mutations in the parkin gene produce autosomal recessive juvenile-onset PD. We have studied 203 sibling pairs with PD who were evaluated by a rigorous neurological assessment based on (a) inclusion criteria consisting of clinical features highly associated with autopsy-confirmed PD and (b) exclusion criteria highly associated with other, non-PD pathological diagnoses. Families with positive LOD scores for a marker in an intron of the parkin gene were prioritized for parkin-gene testing, and mutations in the parkin gene were identified in 22 families. To reduce genetic heterogeneity, these families were not included in subsequent genome-screen analysis. Thus, a total of 160 multiplex families without evidence of a parkin mutation were used in multipoint nonparametric linkage analysis to identify PD-susceptibility genes. Two models of PD affection status were considered: model I included only those individuals with a more stringent diagnosis of verified PD (96 sibling pairs from 90 families), whereas model II included all examined individuals as affected, regardless of their final diagnostic classification (170 sibling pairs from 160 families). Under model I, the highest LOD scores were observed on chromosome X (LOD score 2.1) and on chromosome 2 (LOD score 1.9). Analyses performed with all available sibling pairs (model II) found even greater evidence of linkage to chromosome X (LOD score 2.7) and to chromosome 2 (LOD score 2.5). Evidence of linkage was also found to chromosomes 4, 5, and 13 (LOD scores >1.5). Our findings are consistent with those of other linkage studies that have reported linkage to chromosomes 5 and X.
Neurology | 2009
William C. Nichols; Nathan Pankratz; Diane K. Marek; Michael W. Pauciulo; Veronika E. Elsaesser; Cheryl Halter; Alice Rudolph; Joanne Wojcieszek; Ronald F. Pfeiffer; Tatiana Foroud
Objective: To characterize sequence variation within the glucocerebrosidase (GBA) gene in a select subset of our sample of patients with familial Parkinson disease (PD) and then to test in our full sample whether these sequence variants increased the risk for PD and were associated with an earlier onset of disease. Methods: We performed a comprehensive study of all GBA exons in one patient with PD from each of 96 PD families, selected based on the family-specific lod scores at the GBA locus. Identified GBA variants were subsequently screened in all 1325 PD cases from 566 multiplex PD families and in 359 controls. Results: Nine different GBA variants, five previously reported, were identified in 21 of the 96 PD cases sequenced. Screening for these variants in the full sample identified 161 variant carriers (12.2%) in 99 different PD families. An unbiased estimate of the frequency of the five previously reported GBA variants in the familial PD sample was 12.6% and in the control sample was 5.3% (odds ratio 2.6; 95% confidence interval 1.5–4.4). Presence of a GBA variant was associated with an earlier age at onset (p = 0.0001). On average, those patients carrying a GBA variant had onset with PD 6.04 years earlier than those without a GBA variant. Conclusions: This study suggests that GBA is a susceptibility gene for familial Parkinson disease (PD) and patients with GBA variants have an earlier age at onset than patients with PD without GBA variants.
American Journal of Human Genetics | 2003
Nathan Pankratz; William C. Nichols; Sean K. Uniacke; Cheryl Halter; Alice Rudolph; Cliff Shults; P. Michael Conneally; Tatiana Foroud; Lawrence I. Golbe; William C. Koller; Kelly Lyons; Karen Marder; Frederick Marshall; David Oakes; Aileen Shinaman; Eric Siemers; Joanne Wojcieszek; Joann Belden; Julie H. Carter; Richard Camicioli; Pamela Andrews; Magali Fernandez; Jean Hubble; Carson Reider; Ali H. Rajput; Alex Rajput; Theresa Shirley; Michel Panisset; Jean Hall; Tilak Mendis
Parkinson disease (PD) is the second most common neurodegenerative disorder, surpassed in frequency only by Alzheimer disease. Elsewhere we have reported linkage to chromosome 2q in a sample of sibling pairs with PD. We have now expanded our sample to include 150 families meeting our strictest diagnostic definition of verified PD. To further delineate the chromosome 2q linkage, we have performed analyses using only those pedigrees with the strongest family history of PD. Linkage analyses in this subset of 65 pedigrees generated a LOD score of 5.1, which was obtained using an autosomal dominant model of disease transmission. This result strongly suggests that variation in a gene on chromosome 2q36-37 contributes to PD susceptibility.
BMC Medical Genetics | 2009
Jeanne C. Latourelle; Nathan Pankratz; Alexandra Dumitriu; Jemma B. Wilk; Stefano Goldwurm; Gianni Pezzoli; Claudio Mariani; Anita L. DeStefano; Cheryl Halter; James F. Gusella; William C. Nichols; Richard H. Myers; Tatiana Foroud
BackgroundAge at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age.MethodsInitial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy.ResultsMeta-analysis across the three studies detected consistent association (p < 1 × 10-5) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 × 10-7) lies between the genes QSER1 and PRRG4. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 × 10-6) which lies in an intron of the AAK1 gene. This gene is closely related to GAK, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases.ConclusionTaken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.
Neurology | 2007
William C. Nichols; Veronika E. Elsaesser; Nathan Pankratz; Michael W. Pauciulo; Diane K. Marek; Cheryl Halter; Alice Rudolph; Clifford W. Shults; Tatiana Foroud
Background: Pathogenic mutations in the leucine-rich repeat kinase 2 gene (LRRK2) have been found to cause typical, later-onset Parkinson disease (PD). Although G2019S is the most common mutation, other mutations have also been reported. It is critical to catalog the types of mutations found in LRRK2 that can cause PD, so as to provide insight regarding disease susceptibility and potential novel treatments. Methods: We performed a comprehensive study of all 51 exons of the LRRK2 gene in one PD patient from each of 88 multiplex PD families who had the highest family-specific multipoint lod score at the LRRK2 locus from a cohort of 430 PD families without the G2019S mutation. Results: Five families (5.7%) harbored what seem to be novel, pathogenic mutations (L1795F, I1192V, E10K, E334K, Q1111H). Three of these apparent mutations were in known, functional domains of the LRRK2 protein, where other studies have also identified disease producing mutations. However, two of the novel variants were found in the N-terminal region of LRRK2, where no pathogenic substitutions have yet been reported. Similar to previous studies, all subjects with an LRRK2 mutation had classic symptoms of PD and typical, later age at onset. Conclusions: We have identified five novel variants in LRRK2, with two of these in the N-terminal region of LRRK2, where no pathogenic substitutions have been previously reported. If confirmed to be causative, these mutations would broaden the potential mechanisms whereby mutations in LRRK2 result in Parkinson disease. GLOSSARY: AD = Alzheimer disease; cDNA = complementary DNA; COR = C terminal of Ras; Hisp = Hispanic; LRR = leucine-rich repeat; LRRK2 = leucine-rich repeat kinase 2 gene; MMSE = Mini-Mental State Examination; NS = nonsynonymous variant that is potentially disease producing; PD = Parkinson disease; Roc = Ras of complex; S = synonymous variant that is not likely to be pathogenic; UPDRS = Unified Parkinson’s Disease Rating Scale.
Neurology | 2009
Nathan Pankratz; Diane Kissell; Michael W. Pauciulo; Cheryl Halter; Alice Rudolph; Ronald F. Pfeiffer; Karen Marder; Tatiana Foroud; William C. Nichols
Objective: Mutations in both alleles of parkin have been shown to result in Parkinson disease (PD). However, it is unclear whether haploinsufficiency (presence of a mutation in only 1 of the 2 parkin alleles) increases the risk for PD. Methods: We performed comprehensive dosage and sequence analysis of all 12 exons of parkin in a sample of 520 independent patients with familial PD and 263 controls. We evaluated whether presence of a single parkin mutation, either a sequence (point mutation or small insertion/deletion) or dosage (whole exon deletion or duplication) mutation, was found at increased frequency in cases as compared with controls. We then compared the clinical characteristics of cases with 0, 1, or 2 parkin mutations. Results: We identified 55 independent patients with PD with at least 1 parkin mutation and 9 controls with a single sequence mutation. Cases and controls had a similar frequency of single sequence mutations (3.1% vs 3.4%, p = 0.83); however, the cases had a significantly higher rate of dosage mutations (2.6% vs 0%, p = 0.009). Cases with a single dosage mutation were more likely to have an earlier age at onset (50% with onset at ≤45 years) compared with those with no parkin mutations (10%, p = 0.00002); this was not true for cases with only a single sequence mutation (25% with onset at ≤45 years, p = 0.06). Conclusions: Parkin haploinsufficiency, specifically for a dosage mutation rather than a point mutation or small insertion/deletion, is a risk factor for familial PD and may be associated with earlier age at onset.
PLOS ONE | 2011
Nathan Pankratz; Alexandra Dumitriu; Kurt N. Hetrick; Mei Sun; Jeanne C. Latourelle; Jemma B. Wilk; Cheryl Halter; Kimberly F. Doheny; James F. Gusella; William C. Nichols; Richard H. Myers; Tatiana Foroud; Anita L. DeStefano
Copy number variants (CNVs) are known to cause Mendelian forms of Parkinson disease (PD), most notably in SNCA and PARK2. PARK2 has a recessive mode of inheritance; however, recent evidence demonstrates that a single CNV in PARK2 (but not a single missense mutation) may increase risk for PD. We recently performed a genome-wide association study for PD that excluded individuals known to have either a LRRK2 mutation or two PARK2 mutations. Data from the Illumina370Duo arrays were re-clustered using only white individuals with high quality intensity data, and CNV calls were made using two algorithms, PennCNV and QuantiSNP. After quality assessment, the final sample included 816 cases and 856 controls. Results varied between the two CNV calling algorithms for many regions, including the PARK2 locus (genome-wide p = 0.04 for PennCNV and p = 0.13 for QuantiSNP). However, there was consistent evidence with both algorithms for two novel genes, USP32 and DOCK5 (empirical, genome-wide p-values<0.001). PARK2 CNVs tended to be larger, and all instances that were molecularly tested were validated. In contrast, the CNVs in both novel loci were smaller and failed to replicate using real-time PCR, MLPA, and gel electrophoresis. The DOCK5 variation is more akin to a VNTR than a typical CNV and the association is likely caused by artifact due to DNA source. DNA for all the cases was derived from whole blood, while the DNA for all controls was derived from lymphoblast cell lines. The USP32 locus contains many SNPs with low minor allele frequency leading to a loss of heterozygosity that may have been spuriously interpreted by the CNV calling algorithms as support for a deletion. Thus, only the CNVs within the PARK2 locus could be molecularly validated and associated with PD susceptibility.
Neurology | 2009
William C. Nichols; Diane Kissell; N. Pankratz; Michael W. Pauciulo; Veronika E. Elsaesser; K. A. Clark; Cheryl Halter; Alice Rudolph; Joanne Wojcieszek; Ronald F. Pfeiffer; Tatiana Foroud
Objective: A recent study reported that mutations in a gene on chromosome 2q36-37, GIGYF2, result in Parkinson disease (PD). We have previously reported linkage to this chromosomal region in a sample of multiplex PD families, with the strongest evidence of linkage obtained using the subset of the sample having the strongest family history of disease and meeting the strictest diagnostic criteria. We have tested whether mutations in GIGYF2 may account for the previously observed linkage finding. Methods: We sequenced the GIGYF2 coding region in 96 unrelated patients with PD used in our original study that contributed to the chromosome 2q36-37 linkage signal. Subsequently, we genotyped the entire sample of 566 multiplex PD kindreds as well as 1,447 controls to test whether variants in GIGYF2 are causative or increase susceptibility for PD. Results: We detected three novel variants as well as one of the previously reported seven variants in a total of five multiple PD families; however, there was no consistent evidence that these variants segregated with PD in these families. We also did not find a significant increase in risk for PD among those inheriting variants in GIGYF2 (p = 0.28). Conclusions: We believe that variation in a gene other than GIGYF2 accounts for the previously reported linkage finding on chromosome 2q36-37. GDS = Geriatric Depression Scale; MMSE = Mini-Mental State Examination; NCRAD = National Cell Repository for Alzheimer’s Disease; PD = Parkinson disease; PSG = Parkinson Study Group; UPDRS = Unified Parkinson’s Disease Rating Scale.