Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheryl L. Ackert-Bicknell is active.

Publication


Featured researches published by Cheryl L. Ackert-Bicknell.


Journal of Clinical Investigation | 2002

Circulating levels of IGF-1 directly regulate bone growth and density

Shoshana Yakar; Clifford J. Rosen; Wesley G. Beamer; Cheryl L. Ackert-Bicknell; Yiping Wu; Jun Li Liu; Guck T. Ooi; Jennifer Setser; Jan Frystyk; Yves R. Boisclair; Derek LeRoith

IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1-deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis.


Genetics | 2009

A New Standard Genetic Map for the Laboratory Mouse

Allison Cox; Cheryl L. Ackert-Bicknell; Beth L. Dumont; Yueming Ding; Jordana T. Bell; Gudrun A. Brockmann; Jon E. Wergedal; Beverly Paigen; Jonathan Flint; Shirng-Wern Tsaih; Gary A. Churchill; Karl W. Broman

Genetic maps provide a means to estimate the probability of the co-inheritance of linked loci as they are transmitted across generations in both experimental and natural populations. However, in the age of whole-genome sequences, physical distances measured in base pairs of DNA provide the standard coordinates for navigating the myriad features of genomes. Although genetic and physical maps are colinear, there are well-characterized and sometimes dramatic heterogeneities in the average frequency of meiotic recombination events that occur along the physical extent of chromosomes. There also are documented differences in the recombination landscape between the two sexes. We have revisited high-resolution genetic map data from a large heterogeneous mouse population and have constructed a revised genetic map of the mouse genome, incorporating 10,195 single nucleotide polymorphisms using a set of 47 families comprising 3546 meioses. The revised map provides a different picture of recombination in the mouse from that reported previously. We have further integrated the genetic and physical maps of the genome and incorporated SSLP markers from other genetic maps into this new framework. We demonstrate that utilization of the revised genetic map improves QTL mapping, partially due to the resolution of previously undetected errors in marker ordering along the chromosome.


Genome Research | 2011

Genetic analysis in the Collaborative Cross breeding population

Vivek M. Philip; Greta Sokoloff; Cheryl L. Ackert-Bicknell; Martin Striz; Lisa K Branstetter; Melissa A. Beckmann; Jason S. Spence; Barbara L. Jackson; Leslie D. Galloway; Paul E Barker; Ann M. Wymore; Patricia R. Hunsicker; David C. Durtschi; Ginger S. Shaw; Sarah G. Shinpock; Kenneth F. Manly; Darla R. Miller; Kevin D. Donohue; Cymbeline T. Culiat; Gary A. Churchill; William R. Lariviere; Abraham A. Palmer; Bruce F. O'Hara; Brynn H. Voy; Elissa J. Chesler

Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-γ nuclear translocation

Masanobu Kawai; Carla B. Green; Beata Lecka-Czernik; Nicholas Douris; Misty R. Gilbert; Shihoko Kojima; Cheryl L. Ackert-Bicknell; Neha Garg; Mark C. Horowitz; Martin L. Adamo; David R. Clemmons; Clifford J. Rosen

Nocturnin (NOC) is a circadian-regulated protein related to the yeast family of transcription factors involved in the cellular response to nutrient status. In mammals, NOC functions as a deadenylase but lacks a transcriptional activation domain. It is highly expressed in bone-marrow stromal cells (BMSCs), hepatocytes, and adipocytes. In BMSCs exposed to the PPAR-γ (peroxisome proliferator-activated receptor-γ) agonist rosiglitazone, Noc expression was enhanced 30-fold. Previously, we reported that Noc−/− mice had low body temperature, were protected from diet-induced obesity, and most importantly exhibited absence of Pparg circadian rhythmicity on a high-fat diet. Consistent with its role in influencing BMSCs allocation, Noc−/− mice have reduced bone marrow adiposity and high bone mass. In that same vein, NOC overexpression enhances adipogenesis in 3T3-L1 cells but negatively regulates osteogenesis in MC3T3-E1 cells. NOC and a mutated form, which lacks deadenylase activity, bind to PPAR-γ and markedly enhance PPAR-γ transcriptional activity. Both WT and mutant NOC facilitate nuclear translocation of PPAR-γ. Importantly, NOC-mediated nuclear translocation of PPAR-γ is blocked by a short peptide fragment of NOC that inhibits its physical interaction with PPAR-γ. The inhibitory effect of this NOC-peptide was partially reversed by rosiglitazone, suggesting that effect of NOC on PPAR-γ nuclear translocation may be independent of ligand-mediated PPAR-γ activation. In sum, Noc plays a unique role in the regulation of mesenchymal stem-cell lineage allocation by modulating PPAR-γ activity through nuclear translocation. These data illustrate a unique mechanism whereby a nutrient-responsive gene influences BMSCs differentiation, adipogenesis, and ultimately body composition.


PLOS Genetics | 2014

Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment

John P. Kemp; Carolina Medina-Gomez; Karol Estrada; Beate St Pourcain; Denise H. M. Heppe; Nicole M. Warrington; Ling Oei; Susan M. Ring; Claudia J. Kruithof; Nicholas J. Timpson; Lisa E. Wolber; Sjur Reppe; Kaare M. Gautvik; Elin Grundberg; Bing Ge; Bram C. J. van der Eerden; Jeroen van de Peppel; Matthew A. Hibbs; Cheryl L. Ackert-Bicknell; Kwangbom Choi; Daniel L. Koller; Michael J. Econs; Frances M. K. Williams; Tatiana Foroud; M. Carola Zillikens; Claes Ohlsson; Albert Hofman; André G. Uitterlinden; George Davey Smith; Vincent W. V. Jaddoe

Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20–0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n∼9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01×10−37), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31×10−14). In addition, we report a novel association between RIN3 (previously associated with Pagets disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4×10−10). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.


Endocrinology | 2009

Strain-specific effects of rosiglitazone on bone mass, body composition, and serum insulin-like growth factor-I.

Cheryl L. Ackert-Bicknell; Keith R. Shockley; Lindsay G. Horton; Beata Lecka-Czernik; Gary A. Churchill; Clifford J. Rosen

Activation of peroxisome proliferator activated receptor-gamma (PPARG) is required for the differentiation of marrow mesenchymal stem cell into adipocytes and is associated with the development of age-related marrow adiposity in mice. Thiazolidinediones are agonists for PPARG and have a heterogeneous effect on bone mineral density (BMD). We postulated that genetic determinants influence the skeletal response to thiazolidinediones. We examined the effects of rosiglitazone (3 mg/kg . d for 8 wk) on BMD, body composition, and serum IGF-I in adult female mice from four inbred strains. C3H/HeJ mice showed the most significant response to treatment, exhibiting decreased femoral and vertebral BMD, reduced distal femoral bone volume fraction and a decrease in serum IGF-I. In DBA/2J, there were no changes in femoral BMD or bone volume fraction, but there was a decrease in vertebral BMD. C57BL/6J mice showed increases in marrow adiposity, without associated changes in trabecular bone volume; the skeletal effects from rosiglitazone in A/J mice were minimal. No association between trabecular bone volume and marrow adiposity was found. The effect of rosiglitazone on gene expression in the femur was then examined in the C3H/HeJ and C57BL/6J strains by microarray. Increased gene expression was observed in the PPARG signaling pathway and fatty acid metabolism in both C3H/HeJ and C57BL/6J, but a significant down-regulation of genes associated with cell cycle was noted only in the C3H/HeJ strain. The divergent skeletal responses to rosiglitazone in this study suggest the existence of a strong genetic background effect.


Veterinary Pathology | 2006

Expression of Terminal Differentiation Proteins Defines Stages of Mouse Mammary Gland Development

I. Mikaelian; M. Hovick; Kathleen A. Silva; L. M. Burzenski; Leonard D. Shultz; Cheryl L. Ackert-Bicknell; G. A. Cox; John P. Sundberg

Immunohistochemical analysis using paraffin-embedded specimens is the method of choice to evaluate protein expression at a cellular level while preserving tissue architecture in normal and neoplastic tissues. Current knowledge of the expression of terminal differentiation markers in the mouse mammary gland relies on the evaluation of frozen tissues by use of immunofluorescence. We assessed changes in patterns of expression of terminal differentiation markers throughout the development of the mouse mammary gland in paraffin-embedded tissues. The expression of a-smooth muscle actin (SMA) and keratins (K) 5, 8/18, and 14 was influenced by the development stage of the mammary gland. Expression of K5 and SMA was restricted to basal cells. Keratin 14 was consistently expressed by mammary basal cells, and was detected in scattered luminal cells from 13.5 days after conception through puberty. Labeling for K8/18 of luminal cells was heterogeneous at all times. Heterogeneous expression patterns in luminal cells suggest this layer has cells with a variety of biological functions. The absence of K6 expression at any stage of the development of the mammary gland was confirmed by use of reverse transcriptase-polymerase chain reaction analysis, which indicates that this intermediate filament is not a marker of the mammary gland stem cell. Finally, consistent with results of earlier studies, keratins 1, 10, 13, and 15, and filaggrin, involucrin, and loricrin were not detected at any stage of mammary gland development.


Journal of Bone and Mineral Research | 2008

PPARG by dietary fat interaction influences bone mass in mice and humans

Cheryl L. Ackert-Bicknell; Serkalem Demissie; Caralina Marín de Evsikova; Yi-Hsiang Hsu; Victoria E. DeMambro; David Karasik; L. Adrienne Cupples; Jose M. Ordovas; Katherine L. Tucker; Kelly Cho; Ernesto Canalis; Beverly Paigen; Gary A. Churchill; Jiri Forejt; Wesley G. Beamer; Serge Livio Ferrari; Mary L. Bouxsein; Douglas P. Kiel; Clifford J. Rosen

Adult BMD, an important risk factor for fracture, is the result of genetic and environmental interactions. A quantitative trait locus (QTL) for the phenotype of volumetric BMD (vBMD), named Bmd8, was found on mid‐distal chromosome (Chr) 6 in mice. This region is homologous to human Chr 3p25. The B6.C3H‐6T (6T) congenic mouse was previously created to study this QTL. Using block haplotyping of the 6T congenic region, expression analysis in the mouse, and examination of nonsynonymous SNPs, peroxisome proliferator activated receptor γ (Pparg) was determined to be the most likely candidate gene for the Bmd8 QTL of the 630 genes located in the congenic region. Furthermore, in the C3H/HeJ (C3H) strain, which is the donor strain for the 6T congenic, several polymorphisms were found in the Pparg gene. On challenge with a high‐fat diet, we found that the 6T mouse has a lower areal BMD (aBMD) and volume fraction of trabecular bone (BV/TV%) of the distal femur compared with B6 mice. Interactions between SNPs in the PPARG gene and dietary fat for the phenotype of BMD were examined in the Framingham Offspring Cohort. This analysis showed that there was a similar interaction of the PPARG gene and diet (fat intake) on aBMD in both men and women. These findings suggest that dietary fat has a significant influence on BMD that is dependent on the alleles present for the PPARG gene.


Journal of Bone and Mineral Research | 2007

Genetic Dissection of Mouse Distal Chromosome 1 Reveals Three Linked BMD QTLs With Sex‐Dependent Regulation of Bone Phenotypes

Wesley G. Beamer; Kathryn L. Shultz; Cheryl L. Ackert-Bicknell; Lindsay G. Horton; Krista M. Delahunty; Harold F Coombs; Leah Rae Donahue; Ernesto Canalis; Clifford J. Rosen

Genetic analyses with mouse congenic strains for distal Chr1 have identified three closely linked QTLs regulating femoral vBMD, mid‐diaphyseal cortical thickness, and trabecular microstructure in a sex‐dependent fashion. The homologous relationship between distal mouse Chr 1 and human 1q21–24 offers the possibility of finding common regulatory genes for cortical and trabecular bone.


PLOS ONE | 2012

Canonical A-to-I and C-to-U RNA Editing Is Enriched at 3′UTRs and microRNA Target Sites in Multiple Mouse Tissues

Tongjun Gu; Frank W. Buaas; Allen K. Simons; Cheryl L. Ackert-Bicknell; Robert E. Braun; Matthew A. Hibbs

RNA editing is a process that modifies RNA nucleotides and changes the efficiency and fidelity of the central dogma. Enzymes that catalyze RNA editing are required for life, and defects in RNA editing are associated with many diseases. Recent advances in sequencing have enabled the genome-wide identification of RNA editing sites in mammalian transcriptomes. Here, we demonstrate that canonical RNA editing (A-to-I and C-to-U) occurs in liver, white adipose, and bone tissues of the laboratory mouse, and we show that apparent non-canonical editing (all other possible base substitutions) is an artifact of current high-throughput sequencing technology. Further, we report that high-confidence canonical RNA editing sites can cause non-synonymous amino acid changes and are significantly enriched in 3′ UTRs, specifically at microRNA target sites, suggesting both regulatory and functional consequences for RNA editing.

Collaboration


Dive into the Cheryl L. Ackert-Bicknell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wesley G. Beamer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Gary A. Churchill

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin L. Adamo

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas J. Adams

University of Connecticut Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge