Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheryl L. Patten is active.

Publication


Featured researches published by Cheryl L. Patten.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2014

Indole-3-acetic acid in plant–microbe interactions

Daiana Duca; Janet S. H. Lorv; Cheryl L. Patten; David R. Rose; Bernard R. Glick

Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant–microbe interactions including phytostimulation and phytopathogenesis.


Applied and Environmental Microbiology | 2010

Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions and denitrification in anoxic soil microcosms amended with glucose and plant residues.

Sherri L. Henderson; Catherine E. Dandie; Cheryl L. Patten; Bernie J. Zebarth; David L. Burton; J. T. Trevors; Claudia Goyer

ABSTRACT In agricultural cropping systems, crop residues are sources of organic carbon (C), an important factor influencing denitrification. The effects of red clover, soybean, and barley plant residues and of glucose on denitrifier abundance, denitrification gene mRNA levels, nitrous oxide (N2O) emissions, and denitrification rates were quantified in anoxic soil microcosms for 72 h. nosZ gene abundances and mRNA levels significantly increased in response to all organic carbon treatments over time. In contrast, the abundance and mRNA levels of Pseudomonas mandelii and closely related species (nirSP) increased only in glucose-amended soil: the nirSP guild abundance increased 5-fold over the 72-h incubation period (P < 0.001), while the mRNA level significantly increased more than 15-fold at 12 h (P < 0.001) and then subsequently decreased. The nosZ gene abundance was greater in plant residue-amended soil than in glucose-amended soil. Although plant residue carbon-to-nitrogen (C:N) ratios varied from 15:1 to 30:1, nosZ gene and mRNA levels were not significantly different among plant residue treatments, with an average of 3.5 × 107 gene copies and 6.9 × 107 transcripts g−1 dry soil. Cumulative N2O emissions and denitrification rates increased over 72 h in both glucose- and plant-tissue-C-treated soil. The nirSP and nosZ communities responded differently to glucose and plant residue amendments. However, the targeted denitrifier communities responded similarly to the different plant residues under the conditions tested despite changes in the quality of organic C and different C:N ratios.


FEMS Microbiology Ecology | 2011

Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones

Catherine E. Dandie; Sophie Wertz; Caissie L. Leclair; Claudia Goyer; David L. Burton; Cheryl L. Patten; Bernie J. Zebarth; J. T. Trevors

Lands under riparian and agricultural management differ in soil properties, water content, plant species and nutrient content and are therefore expected to influence denitrifier communities, denitrification and nitrous oxide (N(2) O) emissions. Denitrifier community abundance, denitrifier community structure, denitrification gene expression and activity were quantified on three dates in a maize field and adjacent riparian zone. N(2) O emissions were greater in the agricultural zone, whereas complete denitrification to N(2) was greater in the riparian zone. In general, the targeted denitrifier community abundance did not change between agricultural and riparian zones. However, nosZ gene expression was greater in the riparian zone than the agricultural zone. The community structure of nirS-gene-bearing denitrifiers differed in June only, whereas the nirK-gene-bearing community structure differed significantly between the riparian and the agricultural zones at all dates. The nirK-gene-bearing community structure was correlated with soil pH, while no significant correlations were found between nirS-gene-bearing community structure and soil environmental variables or N(2) O emissions, denitrification or denitrifier enzyme activity. The results suggested for the nirK and nirS-gene-bearing communities different factors control abundance vs. community structure. The nirK-gene-bearing community structure was also more responsive than the nirS-gene-bearing community structure to change between the two ecosystems.


Journal of Bacteriology | 2008

Aromatic Amino Acid-Dependent Expression of Indole-3-Pyruvate Decarboxylase Is Regulated by TyrR in Enterobacter cloacae UW5

R. Julie Ryu; Cheryl L. Patten

The plant growth-promoting rhizobacterium Enterobacter cloacae UW5 synthesizes the plant growth hormone indole-3-acetic acid (IAA) via the indole-3-pyruvate pathway utilizing the enzyme indole-3-pyruvate decarboxylase that is encoded by ipdC. In this bacterium, ipdC expression and IAA production occur in stationary phase and are induced by an exogenous source of tryptophan, conditions that are present in the rhizosphere. The aim of this study was to identify the regulatory protein that controls the expression of ipdC. We identified a sequence in the promoter region of ipdC that is highly similar to the recognition sequence for the Escherichia coli regulatory protein TyrR that regulates genes involved in aromatic amino acid transport and metabolism. Using a tyrR insertional mutant, we demonstrate that TyrR is required for IAA production and for induction of ipdC transcription. TyrR directly induces ipdC expression, as was determined by real-time quantitative reverse transcription-PCR, by ipdC promoter-driven reporter gene activity, and by electrophoretic mobility shift assays. Expression increases in response to tryptophan, phenylalanine, and tyrosine. This suggests that, in addition to its function in plant growth promotion, indolepyruvate decarboxylase may be important for aromatic amino acid uptake and/or metabolism.


Applied and Environmental Microbiology | 2006

An Integrated Approach to Functional Genomics: Construction of a Novel Reporter Gene Fusion Library for Sinorhizobium meliloti

Alison Cowie; Jiujun Cheng; Christopher D. Sibley; Ying Fong; Rahat Zaheer; Cheryl L. Patten; Richard M. Morton; G. Brian Golding; Turlough M. Finan

ABSTRACT As a means of investigating gene function, we developed a robust transcription fusion reporter vector to measure gene expression in bacteria. The vector, pTH1522, was used to construct a random insert library for the Sinorhizobium meliloti genome. pTH1522 replicates in Escherichia coli and can be transferred to, but cannot replicate in, S. meliloti. Homologous recombination of the DNA fragments cloned in pTH1522 into the S. meliloti genome generates transcriptional fusions to either the reporter genes gfp+ and lacZ or gusA and rfp, depending on the orientation of the cloned fragment. Over 12,000 fusion junctions in 6,298 clones were identified by DNA sequence analysis, and the plasmid clones were recombined into S. meliloti. Reporter enzyme activities following growth of these recombinants in complex medium (LBmc) and in minimal medium with glucose or succinate as the sole carbon source allowed the identification of genes highly expressed under one or more growth condition and those expressed at very low to background levels. In addition to generating reporter gene fusions, the vector allows Flp recombinase-directed deletion formation and gene disruption, depending on the nature of the cloned fragment. We report the identification of genes essential for growth on complex medium as deduced from an inability to recover recombinants from pTH1522 clones that carried fragments internal to gene or operon transcripts. A database containing all the gene expression activities together with a web interface showing the precise locations of reporter fusion junctions has been constructed (www.sinorhizobium.org ).


Critical Reviews in Microbiology | 2013

Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria.

Cheryl L. Patten; Andrew J. C. Blakney; Thomas J. D. Coulson

The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.


Applied and Environmental Microbiology | 2009

Diversity of nirK denitrifying genes and transcripts in an agricultural soil.

Sophie Wertz; Catherine E. Dandie; Claudia Goyer; J. T. Trevors; Cheryl L. Patten

ABSTRACT Environmental conditions can change dramatically over a crop season and among locations in an agricultural field and can increase denitrification and emissions of the potent greenhouse gas nitrous oxide. In a previous study, changes in the overall size of the denitrifier community in a potato crop field were relatively small and did not correlate with variations in environmental conditions or denitrification rates. However, denitrifying bacteria are taxonomically diverse, and different members of the community may respond differently to environmental changes. The objective of this research was to understand which portion of the nirK denitrifying community is active and contributes to denitrification under conditions in a potato crop field. Denaturing gradient gel electrophoresis (DGGE) of nirK genes in soil-extracted DNA showed changes in the composition of the nirK denitrifier community over the growing season and among spatial locations in the field. By contrast, the composition of the active nirK denitrifier community, as determined by DGGE analysis of nirK transcripts derived from soil-extracted mRNA, changed very little over time, although differences in the relative abundance of some specific transcripts were observed between locations. Our results indicate that the soil denitrifier populations bearing nirK genes are not all contributing to denitrification and that the denitrifying populations that are active are among the most abundant and ubiquitous nirK-bearing denitrifiers. Changes in the community composition of the total and active nirK denitrifiers were not strongly correlated with changes in environmental factors and denitrification activity.


FEMS Microbiology Ecology | 2011

A plant growth-promoting pseudomonad is closely related to the Pseudomonas syringae complex of plant pathogens

Andrew J. C. Blakney; Cheryl L. Patten

Pseudomonas putida GR12-2 is well known as a plant growth-promoting rhizobacterium; however, phylogenetic analysis using the 16S rRNA gene and four housekeeping genes indicated that this strain forms a monophyletic group with the Pseudomonas syringae complex, which is composed of several species of plant pathogens. On the basis of these sequence analyses, we suggest that P. putida GR12-2 be redesignated as P. syringae GR12-2. To compare the ecological roles of P. syringae GR12-2 with its close relatives P. syringae pathovar (pv.) tomato DC3000 and P. syringae pv. syringae B728a, we investigated their ability to cause disease and promote plant growth. When introduced on tobacco or tomato leaves, P. syringae GR12-2 was unable to elicit a hypersensitive response or cause disease, which are characteristic responses of P. syringae DC3000 and B728a, nor were type III secretion system genes required for virulence detected in P. syringae GR12-2 by PCR or DNA hybridization. In contrast to P. syringae GR12-2, neither of the phytopathogens was able to promote root growth when inoculated onto canola seeds. Although commensals and nonpathogens have been reported among the strains of the P. syringae complex, P. syringae GR12-2 is a mutualist and a phytostimulator.


Journal of Applied Microbiology | 2009

Overexpression of hns in the plant growth‐promoting bacterium Enterobacter cloacae UW5 increases root colonization

M.M. English; Thomas J. D. Coulson; S.R. Horsman; Cheryl L. Patten

Aims:  Plant growth‐promoting rhizobacteria (PGPR) introduced into soil often do not compete effectively with indigenous micro‐organisms for plant colonization. The aim of this study was to identify novel genes that are important for root colonization by the PGPR Enterobacter cloacae UW5.


Genome Announcements | 2015

Complete Genome Sequence of Enterobacter cloacae UW5, a Rhizobacterium Capable of High Levels of Indole-3-Acetic Acid Production.

Thomas J. D. Coulson; Cheryl L. Patten

ABSTRACT We report the complete genome sequence of Enterobacter cloacae UW5, an indole-3-acetic acid-producing rhizobacterium originally isolated from the rhizosphere of grass. The 4.9-Mbp genome has a G+C content of 54% and contains 4,496 protein-coding sequences.

Collaboration


Dive into the Cheryl L. Patten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine E. Dandie

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Claudia Goyer

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nebai Mesanza

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernie J. Zebarth

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge