Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheryl Y. Hayashi is active.

Publication


Featured researches published by Cheryl Y. Hayashi.


BMC Biology | 2017

The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

Evelyn E. Schwager; Prashant P. Sharma; Thomas H. Clarke; Daniel J. Leite; Torsten Wierschin; Matthias Pechmann; Yasuko Akiyama-Oda; Lauren Esposito; Jesper Bechsgaard; Trine Bilde; Alexandra D. Buffry; Hsu Chao; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Cornelius Eibner; Cassandra G. Extavour; Peter Funch; Jessica E. Garb; Luis B. Gonzalez; Vanessa L. González; Sam Griffiths-Jones; Yi Han; Cheryl Y. Hayashi; Maarten Hilbrant; Daniel S.T. Hughes; Ralf Janssen; Sandra L. Lee; Ignacio Maeso; Shwetha C. Murali

BackgroundThe duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum.ResultsWe found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication.ConclusionsOur results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Insect Biochemistry and Molecular Biology | 2017

Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization

Ro Crystal Chaw; Christopher A. Saski; Cheryl Y. Hayashi

Spiders use a myriad of silk types for daily survival, and each silk type has a unique suite of task-specific mechanical properties. Of all spider silk types, pyriform silk is distinct because it is a combination of a dry protein fiber and wet glue. Pyriform silk fibers are coated with wet cement and extruded into attachment discs that adhere silks to each other and to substrates. The mechanical properties of spider silk types are linked to the primary and higher-level structures of spider silk proteins (spidroins). Spidroins are often enormous molecules (>250xa0kDa) and have a lengthy repetitive region that is flanked by relatively short (∼100 amino acids), non-repetitive amino- and carboxyl-terminal regions. The amino acid sequence motifs in the repetitive region vary greatly between spidroin type, while motif length and number underlie the remarkable mechanical properties of spider silk fibers. Existing knowledge of pyriform spidroins is fragmented, making it difficult to define links between the structure and function of pyriform spidroins. Here, we present the full-length sequence of the gene encoding pyriform spidroin 1 (PySp1) from the silver garden spider Argiope argentata. The predicted protein is similar to previously reported PySp1 sequences but the A.xa0argentata PySp1 has a uniquely long and repetitive linker, which bridges the amino-terminal and repetitive regions. Predictions of the hydrophobicity and secondary structure of A.xa0argentata PySp1 identify regions important to protein self-assembly. Analysis of the full complement of A.xa0argentata PySp1 repeats reveals extreme intragenic homogenization, and comparison of A.xa0argentata PySp1 repeats with other PySp1 sequences identifies variability in two sub-repetitive expansion regions. Overall, the full-length A.xa0argentata PySp1 sequence provides new evidence for understanding how pyriform spidroins contribute to the properties of pyriform silk fibers.


Zoology | 2017

Silk gene expression of theridiid spiders: implications for male-specific silk use

Sandra M. Correa-Garhwal; R. Crystal Chaw; Thomas H. Clarke; Nadia A. Ayoub; Cheryl Y. Hayashi

Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids.


Scientific Reports | 2017

Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands

Thomas H. Clarke; Jessica E. Garb; Robert A. Haney; R. Crystal Chaw; Cheryl Y. Hayashi; Nadia A. Ayoub

Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.


Molecular Phylogenetics and Evolution | 2018

Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada

James Starrett; Cheryl Y. Hayashi; Shahan Derkarabetian; Marshal Hedin

The relative roles of ecological niche conservatism versus niche divergence in promoting montane speciation remains an important topic in biogeography. Here, our aim was to test whether lineage diversification in a species complex of trapdoor spiders corresponds with riverine barriers or with an ecological gradient associated with elevational tiering. Aliatypus janus was sampled from throughout its range, with emphasis on populations in the southern Sierra Nevada Mountains of California. We collected multi-locus genetic data to generate a species tree for A. janus and its close relatives. Coalescent based hypothesis tests were conducted to determine if genetic breaks within A. janus conform to riverine barriers. Ecological niche models (ENM) under current and Last Glacial Maximum (LGM) conditions were generated and hypothesis tests of niche conservatism and divergence were performed. Coalescent analyses reveal deeply divergent genetic lineages within A. janus, likely corresponding to cryptic species. Two primary lineages meet along an elevational gradient on the western slopes of the southern Sierra Nevada Mountains. ENMs under both current and LGM conditions indicate that these groups occupy largely non-overlapping niches. ENM hypothesis testing rejected niche identity between the two groups, and supported a sharp ecological gradient occurring where the groups meet. However, the niche similarity test indicated that the two groups may not inhabit different background niches. The Sierra Nevada Mountains provide a natural laboratory for simultaneously testing ecological niche divergence and conservatism and their role in speciation across a diverse range of taxa. Aliatypus janus represents a species complex with cryptic lineages that may have diverged due to parapatric speciation along an ecological gradient, or been maintained by the evolution of ecological niche differences following allopatric speciation.


International Journal of Biological Macromolecules | 2018

Genomic perspectives of spider silk genes through target capture sequencing: Conservation of stabilization mechanisms and homology-based structural models of spidroin terminal regions

Matthew A. Collin; Thomas H. Clarke; Nadia A. Ayoub; Cheryl Y. Hayashi

A powerful system for studying protein aggregation, particularly rapid self-assembly, is spider silk. Spider silks are proteinaceous and silk proteins are synthesized and stored within silk glands as liquid dope. As needed, liquid dope is near-instantaneously transformed into solid fibers or viscous adhesives. The dominant constituents of silks are spidroins (spider fibroins) and their terminal domains are vital for the tight control of silk self-assembly. To better understand spidroin termini, we used target capture and deep sequencing to identify spidroin gene sequences from six species representing the araneoid families of Araneidae, Nephilidae, and Theridiidae. We obtained 145 terminal regions, of which 103 are newly annotated here, as well as novel variants within nine diverse spidroin types. Our comparative analyses demonstrated the conservation of acidic, basic, and cysteine amino acid residues across spidroin types that had been proposed to be important for monomer stability, dimer formation, and self-assembly from a limited sampling of spidroins. Computational, protein homology modeling revealed areas of spidroin terminal regions that are highly conserved in three-dimensions despite sequence divergence across spidroin types. Analyses of our dense sampling of terminal regions suggest that most spidroins share stabilization mechanisms, dimer formation, and tertiary structure, despite producing functionally distinct materials.


Evolution & Development | 2018

The developmental and genetic trajectory of coloration in the guppy (Poecilia reticulata)

Cynthia Dick; Jeff Arendt; David N. Reznick; Cheryl Y. Hayashi

Examining the association between trait variation and development is crucial for understanding the evolution of phenotypic differences. Male guppy ornamental caudal fin coloration is one trait that shows a striking degree of variation within and between guppy populations. Males initially have no caudal fin coloration, then gradually develop it as they reach sexual maturity. For males, there is a trade‐off between female preference for caudal fin coloration and increased visibility to predators. This trade‐off may reach unique endpoints in males from different predation regimes. Caudal fin coloration includes black melanin, orange/yellow pteridines or carotenoids, and shimmering iridescence. This study examined the phenotypic trajectory and genetics associated with color development. We found that black coloration always developed first, followed by orange/yellow, then iridescence. The ordering and timing of color appearance was the same regardless of predation regime. The increased expression of melanin synthesis genes correlated well with the visual appearance of black coloration, but there was no correlation between carotenoids or pteridine synthesis gene expression and the appearance of orange/yellow. The lack of orange/yellow coloration in earlier male caudal fin developmental stages may be due to reduced expression of genes underlying the development of orange/yellow xanthophores.


PeerJ | 2018

Sex-biased expression between guppies varying in the presence of ornamental coloration

Cynthia Dick; David N. Reznick; Cheryl Y. Hayashi

Sex-biased gene expression provides a means to achieve sexual dimorphism across a genome largely shared by both sexes. Trinidadian guppies are ideal to examine questions of sex-bias as they exhibit sexual dimorphism in ornamental coloration with male only expression. Here we use RNA-sequencing to quantify whole transcriptome gene expression differences, with a focus on differential expression of color genes between the sexes. We determine whether males express genes positively correlated with coloration at higher levels than females. We find that all the differentially expressed color genes were more highly expressed by males. Males also expressed all known black melanin synthesis genes at higher levels than females, regardless of whether the gene was significantly differentially expressed in the analysis. These differences correlated with the visual color differences between sexes at the stage sampled, as all males had ornamental black coloration apparent. We propose that sexual dimorphism in ornamental coloration is caused by male-biased expression of color genes.


Journal of the Royal Society Interface | 2018

Microstructure and mechanical properties of different keratinous horns

Yuchen Zhang; Wei Huang; Cheryl Y. Hayashi; John Gatesy; Joanna McKittrick

Animal horns play an important role during intraspecific combat. This work investigates the microstructure and mechanical properties of horns from four representative ruminant species: the bighorn sheep (Ovis canadensis), domestic sheep (Ovis aries), mountain goat (Oreamnos americanus) and pronghorn (Antilocapra americana), aiming to understand the relation between evolved microstructures and mechanical properties. Microstructural similarity is found where disc-shaped keratin cells attach edge-to-edge along the growth direction of the horn core (longitudinal direction) forming a lamella; multiple lamellae are layered face to face along the impact direction (radial direction, perpendicular to horn core growth direction), forming a wavy pattern surrounding a common feature, the tubules. Differences among species include the number and shape of the tubules, the orientation of aligned lamellae and the shape of keratin cells. Water absorption tests reveal that the pronghorn horn has the largest water-absorbing ability due to the presence of nanopores in the keratin cells. The loading direction (compressive and tensile) and level of hydration vary among the horns from different species. The differences in mechanical properties among species may relate to their different fighting behaviours: high stiffness and strength in mountain goat to support the forces during stabbing; high tensile strength in pronghorn for interlocked pulling; impact energy absorption properties in domestic and bighorn sheep to protect the skull during butting. These design rules based on evolutionary modifications among species can be applied in synthetic materials to meet different mechanical requirements.


Insect Molecular Biology | 2018

Semi-aquatic spider silks: transcripts, proteins, and silk fibres of the fishing spider, Dolomedes triton (Pisauridae)

Sandra M. Correa-Garhwal; Ro Crystal Chaw; T. Dugger; T.H. Clarke; K.H. Chea; D. Kisailus; Cheryl Y. Hayashi

To survive in terrestrial and aquatic environments, spiders often rely heavily on their silk. The vast majority of silks that have been studied are from orb‐web or cob‐web weaving species, leaving the silks of water‐associated spiders largely undescribed. We characterize transcripts, proteins, and silk fibres from the semi‐aquatic spider Dolomedes triton. From silk gland RNAseq libraries, we report 18 silk transcripts representing four categories of known silk protein types: aciniform, ampullate, pyriform, and tubuliform. Proteomic and structural analyses (scanning electron microscopy, energy dispersive X‐ray spectrometry, contact angle) of the D. triton submersible egg sac reveal similarities to silks from aquatic caddisfly larvae. We identified two layers in D. triton egg sacs, notably a highly hydrophobic outer layer with a different elemental composition compared to egg sacs of terrestrial spiders. These features may provide D. triton egg sacs with their water repellent properties.

Collaboration


Dive into the Cheryl Y. Hayashi's collaboration.

Top Co-Authors

Avatar

Thomas H. Clarke

Washington and Lee University

View shared research outputs
Top Co-Authors

Avatar

Cynthia Dick

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia A. Ayoub

Washington and Lee University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica E. Garb

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge