Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheryl Y. M. Okumura is active.

Publication


Featured researches published by Cheryl Y. M. Okumura.


Journal of Molecular Medicine | 2012

A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection

Cheryl Y. M. Okumura; Andrew Hollands; Dan N. Tran; Joshua Olson; Samira Dahesh; Maren von Köckritz-Blickwede; Wdee Thienphrapa; Courtney Corle; Seung Nam Jeung; Anna Kotsakis; Robert A. Shalwitz; Randall S. Johnson; Victor Nizet

Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.


Clinical Therapeutics | 2014

Antimicrobial Salvage Therapy for Persistent Staphylococcal Bacteremia Using Daptomycin Plus Ceftaroline

George Sakoulas; Pamela A. Moise; Anthony M. Casapao; Poochit Nonejuie; Joshua Olson; Cheryl Y. M. Okumura; Michael J. Rybak; Ravina Kullar; Abhay Dhand; Warren E. Rose; Debra A. Goff; Adam M. Bressler; Yuman Lee; Joe Pogliano; Scott Johns; Glenn W. Kaatz; John R. Ebright; Victor Nizet

PURPOSE Guidelines recommend daptomycin combination therapy as an option for methicillin-resistant Staphylococcus aureus (MRSA) bacteremia after vancomycin failure. Recent data suggest that combining daptomycin with a β-lactam may have unique benefits; however, there are very limited clinical data regarding the use of ceftaroline with daptomycin. METHODS All 26 cases from the 10 medical centers in which ceftaroline plus daptomycin was used for treatment of documented refractory staphylococcal bacteremia from March 2011 to November 2012 were included. In vitro (synergy studies, binding assays, cathelicidin LL-37 killing assays), and in vivo (virulence assays using a murine subcutaneous infection model) studies examining the effects of ceftaroline with daptomycin were also performed. FINDINGS Daptomycin plus ceftaroline was used in 26 cases of staphylococcal bacteremia (20 MRSA, 2 vancomycin-intermediate S aureus, 2 methicillin-susceptible S aureus [MSSA], 2 methicillin-resistant S epidermidis). Bacteremia persisted for a median of 10 days (range, 3-23 days) on previous antimicrobial therapy. After daptomycin plus ceftaroline was started, the median time to bacteremia clearance was 2 days (range, 1-6 days). In vitro studies showed ceftaroline synergy against MRSA and enhanced MRSA killing by cathelicidin LL-37 and neutrophils. Ceftaroline also induced daptomycin binding in MSSA and MRSA to a comparable degree as nafcillin. MRSA grown in subinhibitory concentrations of ceftaroline showed attenuated virulence in a murine subcutaneous infection model. IMPLICATIONS Ceftaroline plus daptomycin may be an option to hasten clearance of refractory staphylococcal bacteremia. Ceftaroline offers dual benefit via synergy with both daptomycin and sensitization to innate host defense peptide cathelicidin LL37, which could attenuate virulence of the pathogen.


Journal of Molecular Medicine | 2014

Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus.

George Sakoulas; Cheryl Y. M. Okumura; Wdee Thienphrapa; Joshua Olson; Poochit Nonejuie; Quang N. Dam; Abhay Dhand; Joe Pogliano; Michael R. Yeaman; Mary E. Hensler; Arnold S. Bayer; Victor Nizet

Based on in vitro synergy studies, the addition of nafcillin to daptomycin was used to treat refractory methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Daptomycin is a de facto cationic antimicrobial peptide in vivo, with antistaphylococcal mechanisms reminiscent of innate host defense peptides (HDPs). In this study, the effects of nafcillin on HDP activity against MRSA were examined in vitro and in vivo. Exposures to β-lactam antimicrobials in general, and nafcillin in particular, significantly increased killing of S. aureus by selected HDPs from keratinocytes, neutrophils, and platelets. This finding correlated with enhanced killing of MRSA by whole blood, neutrophils, and keratinocytes after growth in nafcillin. Finally, nafcillin pretreatment ex vivo reduced MRSA virulence in a murine subcutaneous infection model. Despite the lack of direct activity against MRSA, these studies show potent, consistent, and generalized nafcillin-mediated “sensitization” to increased killing of MRSA by various components of the innate host response. The use of nafcillin as adjunctive therapy in MRSA bacteremia merits further study and should be considered in cases refractory to standard therapy.Key messagesNafcillin has been used as adjunctive therapy to clear persistent MRSA bacteremia.Nafcillin enhances killing of MRSA by a cadre of innate host defense peptides.Nafcillin increases binding of human cathelicidin LL-37 to the MRSA membrane.Nafcillin enhances killing of MRSA by neutrophils.Nafcillin reduces virulence of MRSA in a murine subcutaneous infection model.


PLOS Genetics | 2012

Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection

Ersheng Kuang; Cheryl Y. M. Okumura; Sharon Sheffy-Levin; Tal Varsano; Vincent Chih-Wen Shu; Jianfei Qi; Ingrid R. Niesman; Huei-Jiun Yang; Carlos López-Otín; Wei Yuan Yang; John C. Reed; Limor Broday; Victor Nizet; Ze'ev Ronai

Autophagy is the mechanism by which cytoplasmic components and organelles are degraded by the lysosomal machinery in response to diverse stimuli including nutrient deprivation, intracellular pathogens, and multiple forms of cellular stress. Here, we show that the membrane-associated E3 ligase RNF5 regulates basal levels of autophagy by controlling the stability of a select pool of the cysteine protease ATG4B. RNF5 controls the membranal fraction of ATG4B and limits LC3 (ATG8) processing, which is required for phagophore and autophagosome formation. The association of ATG4B with—and regulation of its ubiquitination and stability by—RNF5 is seen primarily under normal growth conditions. Processing of LC3 forms, appearance of LC3-positive puncta, and p62 expression are higher in RNF5−/− MEF. RNF5 mutant, which retains its E3 ligase activity but does not associate with ATG4B, no longer affects LC3 puncta. Further, increased puncta seen in RNF5−/− using WT but not LC3 mutant, which bypasses ATG4B processing, substantiates the role of RNF5 in early phases of LC3 processing and autophagy. Similarly, RNF-5 inactivation in Caenorhabditis elegans increases the level of LGG-1/LC3::GFP puncta. RNF5−/− mice are more resistant to group A Streptococcus infection, associated with increased autophagosomes and more efficient bacterial clearance by RNF5−/− macrophages. Collectively, the RNF5-mediated control of membranalATG4B reveals a novel layer in the regulation of LC3 processing and autophagy.


Annual Review of Microbiology | 2014

Subterfuge and Sabotage: Evasion of Host Innate Defenses by Invasive Gram-Positive Bacterial Pathogens

Cheryl Y. M. Okumura; Victor Nizet

The development of a severe invasive bacterial infection in an otherwise healthy individual is one of the most striking and fascinating aspects of human medicine. A small cadre of gram-positive pathogens of the genera Streptococcus and Staphylococcus stand out for their unique invasive disease potential and sophisticated ability to counteract the multifaceted components of human innate defense. This review illustrates how these leading human disease agents evade host complement deposition and activation, impede phagocyte recruitment and activation, resist the microbicidal activities of host antimicrobial peptides and reactive oxygen species, escape neutrophil extracellular traps, and promote and accelerate phagocyte cell death through the action of pore-forming cytolysins. Understanding the molecular basis of bacterial innate immune resistance can open new avenues for therapeutic intervention geared to disabling specific virulence factors and resensitizing the pathogen to host innate immune clearance.


Journal of Biological Chemistry | 2012

Novel Phenol-soluble Modulin Derivatives in Community-associated Methicillin-resistant Staphylococcus aureus Identified through Imaging Mass Spectrometry

David J. Gonzalez; Cheryl Y. M. Okumura; Andrew Hollands; Roland Kersten; Kathryn Akong-Moore; Morgan A. Pence; Cheryl L. Malone; Jaclyn Derieux; Bradley S. Moore; Alexander R. Horswill; Jack E. Dixon; Pieter C. Dorrestein; Victor Nizet

Background: Phenol-soluble modulins (PSMs) are small peptides of Staphylococcus aureus with immunosuppressive and antimicrobial properties. Results: Imaging mass spectrometry (IMS) identified PSM derivatives with properties different from those of the parent forms. Conclusion: S. aureus generates truncated PSMs with altered antimicrobial and immunostimulatory properties and aureolysin may contribute to processing of some PSMs. Significance: Observations using the technology of IMS expand our understanding of S. aureus PSMs. Staphylococcus aureus causes a wide range of human disease ranging from localized skin and soft tissue infections to potentially lethal systemic infections. S. aureus has the biosynthetic ability to generate numerous virulence factors that assist in circumventing the innate immune system during disease pathogenesis. Recent studies have uncovered a set of extracellular peptides produced by community-associated methicillin-resistant S. aureus (CA-MRSA) with homology to the phenol-soluble modulins (PSMs) from Staphylococcus epidermidis. CA-MRSA PSMs contribute to skin infection and recruit and lyse neutrophils, and truncated versions of these peptides possess antimicrobial activity. In this study, novel CA-MRSA PSM derivatives were discovered by the use of microbial imaging mass spectrometry. The novel PSM derivatives are compared with their parent full-length peptides for changes in hemolytic, cytolytic, and neutrophil-stimulating activity. A potential contribution of the major S. aureus secreted protease aureolysin in processing PSMs is demonstrated. Finally, we show that PSM processing occurs in multiple CA-MRSA strains by structural confirmation of additional novel derivatives. This work demonstrates that IMS can serve as a useful tool to go beyond genome predictions and expand our understanding of the important family of small peptide virulence factors.


Antimicrobial Agents and Chemotherapy | 2012

Pharmacological inhibition of the ClpXP protease increases bacterial susceptibility to host cathelicidin antimicrobial peptides and cell envelope-active antibiotics.

Shauna M. McGillivray; Dan N. Tran; Nitya S. Ramadoss; John N. Alumasa; Cheryl Y. M. Okumura; George Sakoulas; Micah M. Vaughn; Dawn X. Zhang; Kenneth C. Keiler; Victor Nizet

ABSTRACT The ClpXP protease is a critical bacterial intracellular protease that regulates protein turnover in many bacterial species. Here we identified a pharmacological inhibitor of the ClpXP protease, F2, and evaluated its action in Bacillus anthracis and Staphylococcus aureus. We found that F2 exhibited synergistic antimicrobial activity with cathelicidin antimicrobial peptides and antibiotics that target the cell well and/or cell membrane, such as penicillin and daptomycin, in B. anthracis and drug-resistant strains of S. aureus. ClpXP inhibition represents a novel therapeutic strategy to simultaneously sensitize pathogenic bacteria to host defenses and pharmaceutical antibiotics.


BMC Microbiology | 2011

Study of the IgG endoglycosidase EndoS in group A streptococcal phagocyte resistance and virulence

Jonathan Sjögren; Cheryl Y. M. Okumura; Mattias Collin; Victor Nizet; Andrew Hollands

BackgroundThe secreted enzyme EndoS, an endoglycosidase from Streptococcus pyogenes, hydrolyzes the N-linked glycan of the constant region of immunoglobulin G (IgG) heavy chain and renders the antibody unable to interact with Fc receptors and elicit effector functions. In this study we couple targeted allelic replacement mutagenesis and heterologous expression to elucidate the contribution of EndoS to group A Streptococcus (GAS) phagocyte resistance and pathogenicity in vitro and in vivo.ResultsKnocking out the EndoS gene in GAS M1T1 background revealed no significant differences in bacterial survival in immune cell killing assays or in a systemic mouse model of infection. However, exogenous addition and heterologous expression of EndoS was found to increase GAS resistance to killing by neutrophils and monocytes in vitro. Additionally, heterologous expression of EndoS in M49 GAS increased mouse virulence in vivo.ConclusionsWe conclude that in a highly virulent M1T1 background, EndoS has no significant impact on GAS phagocyte resistance and pathogenicity. However, local accumulation or high levels of expression of EndoS in certain GAS strains may contribute to virulence.


Mbio | 2013

IgG Protease Mac/IdeS Is Not Essential for Phagocyte Resistance or Mouse Virulence of M1T1 Group A Streptococcus

Cheryl Y. M. Okumura; Ericka L. Anderson; Simon Döhrmann; Dan N. Tran; Joshua Olson; Ulrich von Pawel-Rammingen; Victor Nizet

ABSTRACT The Mac/IdeS protein of group A Streptococcus (GAS) is a secreted cysteine protease with cleavage specificity for IgG and is highly expressed in the GAS serotype M1T1 clone, which is the serotype most frequently isolated from patients with life-threatening invasive infections. While studies of Mac/IdeS with recombinant protein have shown that the protein can potentially prevent opsonophagocytosis of GAS by neutrophils, the role of the protein in immune evasion as physiologically produced by the living organism has not been studied. Here we examined the contribution of Mac/IdeS to invasive GAS disease by generating a mutant lacking Mac/IdeS in the hyperinvasive M1T1 background. While Mac/IdeS was highly expressed and proteolytically active in the hyperinvasive strain, elimination of the bacterial protease did not significantly influence GAS phagocytic uptake, oxidative-burst induction, cathelicidin sensitivity, resistance to neutrophil or macrophage killing, or pathogenicity in pre- or postimmune mouse infectious challenges. We conclude that in the highly virulent M1T1 background, Mac/IdeS is not essential for either phagocyte resistance or virulence. Given the conservation of Mac/IdeS and homologues across GAS strains, it is possible that Mac/IdeS serves another important function in GAS ecology or contributes to virulence in other strain backgrounds. IMPORTANCE Group A Streptococcus (GAS) causes human infections ranging from strep throat to life-threatening conditions such as flesh-eating disease and toxic shock syndrome. Common disease-associated clones of GAS can cause both mild and severe infections because of a characteristic mutation and subsequent change in the expression of several genes that develops under host immune selection. One of these genes encodes Mac/IdeS, a protease that has been shown to cleave antibodies important to the immune defense system. In this study, we found that while Mac/IdeS is highly expressed in hypervirulent GAS, it does not significantly contribute to the ability of the bacteria to survive white blood cell killing or produce invasive infection in the mouse. These data underscore the importance of correlating studies on virulence factor function with physiologic expression levels and the complexity of streptococcal pathogenesis and contribute to our overall understanding of how GAS causes disease. Group A Streptococcus (GAS) causes human infections ranging from strep throat to life-threatening conditions such as flesh-eating disease and toxic shock syndrome. Common disease-associated clones of GAS can cause both mild and severe infections because of a characteristic mutation and subsequent change in the expression of several genes that develops under host immune selection. One of these genes encodes Mac/IdeS, a protease that has been shown to cleave antibodies important to the immune defense system. In this study, we found that while Mac/IdeS is highly expressed in hypervirulent GAS, it does not significantly contribute to the ability of the bacteria to survive white blood cell killing or produce invasive infection in the mouse. These data underscore the importance of correlating studies on virulence factor function with physiologic expression levels and the complexity of streptococcal pathogenesis and contribute to our overall understanding of how GAS causes disease.


Infection and Immunity | 2014

Novel Role for the yceGH Tellurite Resistance Genes in the Pathogenesis of Bacillus anthracis

Sarah E. Franks; Celia M. Ebrahimi; Andrew Hollands; Cheryl Y. M. Okumura; Raffi V. Aroian; Victor Nizet; Shauna M. McGillivray

ABSTRACT Bacillus anthracis, the causative agent of anthrax, relies on multiple virulence factors to subvert the host immune defense. Using Caenorhabditis elegans as an infection model, we screened approximately 5,000 transposon mutants of B. anthracis Sterne for decreased virulence. One of the attenuated mutants resulted in loss of expression of yceG and yceH, the last two genes in a six-gene cluster of tellurite resistance genes. We generated an analogous insertional mutant to confirm the phenotype and characterize the role of yceGH in resistance to host defenses. Loss of yceGH rendered the mutants more sensitive to tellurite toxicity as well as to host defenses such as reactive oxygen species and the cathelicidin family of antimicrobial peptides. Additionally, we see decreased survival in mammalian models of infection, including human whole blood and in mice. We identify a novel role for the yceGH genes in B. anthracis Sterne virulence and suggest that C. elegans is a useful infection model to study anthrax pathogenesis.

Collaboration


Dive into the Cheryl Y. M. Okumura's collaboration.

Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua Olson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan N. Tran

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhay Dhand

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

Alexander R. Horswill

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge