Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chetan Nayak is active.

Publication


Featured researches published by Chetan Nayak.


Physical Review Letters | 2005

Topologically Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State

Sankar Das Sarma; Michael H. Freedman; Chetan Nayak

The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at a Landau-level filling fraction nu=5/2. This is particularly intriguing because this state has unusual topological properties, including quasiparticle excitations with non-Abelian braiding statistics. In order to determine the nature of the nu=5/2 state, one must measure the quasiparticle braiding statistics. Here, we propose an experiment which can simultaneously determine the braiding statistics of quasiparticle excitations and, if they prove to be non-Abelian, produce a topologically protected qubit on which a logical Not operation is performed by quasiparticle braiding. Using the measured excitation gap at nu=5/2, we estimate the error rate to be 10(-30) or lower.


Journal of Statistical Mechanics: Theory and Experiment | 2013

Area laws in a many-body localized state and its implications for topological order

Bela Bauer; Chetan Nayak

The question whether Anderson insulators can persist to finite-strength interactions?a scenario dubbed many-body localization?has recently received a great deal of interest. The origin of such a many-body localized phase has been described as localization in Fock space, a picture we examine numerically. We then formulate a precise sense in which a single energy eigenstate of a Hamiltonian can be adiabatically connected to a state of a non-interacting Anderson insulator. We call such a state a many-body localized state and define a many-body localized phase as one in which almost all states are many-body localized states. We explore the possible consequences of this; the most striking is an area law for the entanglement entropy of almost all excited states in a many-body localized phase. We present the results of numerical calculations for a one-dimensional system of spinless fermions. Our results are consistent with an area law and, by implication, many-body localization for almost all states and almost all regions for weak enough interactions and strong disorder. However, there are rare regions and rare states with much larger entanglement entropies. Furthermore, we study the implications that many-body localization may have for topological phases and self-correcting quantum memories. We find that there are scenarios in which many-body localization can help to stabilize topological order at non-zero energy density, and we propose potentially useful criteria to confirm these scenarios.


Nuclear Physics | 1998

A CHERN-SIMONS EFFECTIVE FIELD THEORY FOR THE PFAFFIAN QUANTUM HALL STATE

Eduardo Fradkin; Chetan Nayak; A. M. Tsvelik; Frank Wilczek

Abstract We present a low-energy effective field theory describing the universality class of the Pfaffian quantum Hall state. To arrive at this theory, we observe that the edge theory of the Pfaffian state of bosons at v = 1 is an SU (2) 2 Kac-Moody algebra. It follows that the corresponding bulk effective field theory is an SU (2) Chem-Simons theory with coupling constant k = 2. The effective field theories for other Pfaffian states, such as the fermionic one at v = 1/2 are obtained by a flux-attachment procedure. We discuss the non-Abelian statistics of quasiparticles in the context of this effective field theory.


Physical Review Letters | 2016

Floquet Time Crystals

Dominic V. Else; Bela Bauer; Chetan Nayak

We define what it means for time translation symmetry to be spontaneously broken in a quantum system and show with analytical arguments and numerical simulations that this occurs in a large class of many-body-localized driven systems with discrete time-translation symmetry.


Annals of Physics | 2004

A class of P ; T -invariant topological phases of interacting electrons

Michael H. Freedman; Chetan Nayak; Kirill Shtengel; Kevin Walker; Zhenghan Wang

Abstract We describe a class of parity- and time-reversal-invariant topological states of matter which can arise in correlated electron systems in 2+1-dimensions. These states are characterized by particle-like excitations exhibiting exotic braiding statistics. P and T invariance are maintained by a ‘doubling’ of the low-energy degrees of freedom which occurs naturally without doubling the underlying microscopic degrees of freedom. The simplest examples have been the subject of considerable interest as proposed mechanisms for high-Tc superconductivity. One is the ‘doubled’ version of the chiral spin liquid. The chiral spin liquid gives rise to anyon superconductivity at finite doping and the corresponding field theory is U(1) Chern–Simons theory at coupling constant m=2. The ‘doubled’ theory is two copies of this theory, one with m=2 the other with m=−2. The second example corresponds to Z2 gauge theory, which describes a scenario for spin-charge separation. Our main concern, with an eye towards applications to quantum computation, are richer models which support non-Abelian statistics. All of these models, richer or poorer, lie in a tightly organized discrete family indexed by the Baraha numbers, 2cos(π/(k+2)), for positive integer k. The physical inference is that a material manifesting the Z2 gauge theory or a doubled chiral spin liquid might be easily altered to one capable of universal quantum computation. These phases of matter have a field-theoretic description in terms of gauge theories which, in their infrared limits, are topological field theories. We motivate these gauge theories using a parton model or slave-fermion construction and show how they can be solved exactly. The structure of the resulting Hilbert spaces can be understood in purely combinatorial terms. The highly constrained nature of this combinatorial construction, phrased in the language of the topology of curves on surfaces, lays the groundwork for a strategy for constructing microscopic lattice models which give rise to these phases.


Physical Review Letters | 2008

Measurement-Only Topological Quantum Computation

Michael H. Freedman; Chetan Nayak; Parsa Bonderson

We remove the need to physically transport computational anyons around each other from the implementation of computational gates in topological quantum computing. By using an anyonic analog of quantum state teleportation, we show how the braiding transformations used to generate computational gates may be produced through a series of topological charge measurements.


Nuclear Physics | 1997

The Haldane-Rezayi quantum Hall state and conformal field theory

Victor Gurarie; Michael Flohr; Chetan Nayak

We propose field theories for the bulk and edge of a quantum Hall state in the universality class of the Haldane-Rezayi wavefunction. The bulk theory is associated with the c = −2 conformal field theory. The topological properties of the state, such as the quasiparticle braiding statistics and ground state degeneracy on a torus, may be deduced from this conformal field theory. The 10-fold degeneracy on a torus is explained by the existence of a logarithmic operator in the c = −2 theory; this operator corresponds to a novel bulk excitation in the quantum Hall state. We argue that the edge theory is the c = 1 chiral Dirac fermion, which is related in a simple way to the c = −2 theory of the bulk. This theory is reformulated as a truncated version of a doublet of Dirac fermions in which the SU(2) symmetry - which corresponds to the spin-rotational symmetry of the quantum Hall system - is manifest and non-local. We make predictions for the current-voltage characteristics for transport through point contacts.


Physical Review B | 2017

Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes

Torsten Karzig; Christina Knapp; Roman M. Lutchyn; Parsa Bonderson; Matthew B. Hastings; Chetan Nayak; Jason Alicea; Karsten Flensberg; Stephan Plugge; Yuval Oreg; C. M. Marcus; Michael H. Freedman

We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.


International Journal of Modern Physics B | 1998

Nodal Liquid Theory of the Pseudo-Gap Phase of High-Tc Superconductors

Leon Balents; Matthew P. A. Fisher; Chetan Nayak

We introduce and study the nodal liquid, a novel zero-temperature quantum phase obtained by quantum-disordering a d-wave superconductor. It has numerous remarkable properties which lead us to suggest it as an explanation of the pseudo-gap state in underdoped high-temperature superconductors. In the absence of impurities, these include power-law magnetic order, a T-linear spin susceptibility, nontrivial thermal conductivity, and two- and one-particle charge gaps, the latter evidenced, e.g. in transport and electron photoemission (which exhibits pronounced fourfold anisotropy inherited from the d-wave quasiparticles). We use a (2+1)-dimensional duality transformation to derive an effective field theory for this phase. The theory is comprised of gapless neutral Dirac particles living at the former d-wave nodes, weakly coupled to the fluctuating gauge field of a dual Ginzburg–Landau theory. The nodal liquid interpolates naturally between the d-wave superconductor and the insulating antiferromagnet, and our effective field theory is powerful enough to permit a detailed analysis of a panoply of interesting phenomena, including charge ordering, antiferromagnetism, and d-wave superconductivity. We also discuss the zero-temperature quantum phase transitions which separate the nodal liquid from various ordered phases.


Physical Review X | 2014

Universal topological quantum computation from a superconductor-abelian quantum hall heterostructure

Roger S. K. Mong; David J. Clarke; Jason Alicea; Netanel H. Lindner; Paul Fendley; Chetan Nayak; Yuval Oreg; Ady Stern; Erez Berg; Kirill Shtengel; Matthew P. A. Fisher

Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Greens observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here we establish a similar correspondence between the Z_3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that---unlike Ising anyons---allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kanes construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. Fibonacci anyons appear as neutral deconfined particles that lead to a two-fold ground-state degeneracy on a torus. In contrast to a p+ip superconductor, vortices do not yield additional particle types yet depending on non-universal energetics can serve as a trap for Fibonacci anyons. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including speculations on alternative realizations with fewer experimental requirements.

Collaboration


Dive into the Chetan Nayak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Waheb Bishara

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Walker

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenghan Wang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge