Chetan V. Jawale
Chonbuk National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chetan V. Jawale.
Veterinary Research | 2012
Atul A. Chaudhari; Chetan V. Jawale; Sam Woong Kim; John Hwa Lee
In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against FT.
Clinical and Vaccine Immunology | 2014
Chetan V. Jawale; John Hwa Lee
ABSTRACT The Escherichia coli heat-labile enterotoxin B subunit (LTB) is a potent vaccine adjuvant. Salmonella enterica serovar Enteritidis ghosts carrying LTB (S. Enteritidis-LTB ghosts) were genetically constructed using a novel plasmid, pJHL187-LTB, designed for the coexpression of the LTB and E lysis proteins. S. Enteritidis-LTB ghosts were characterized using scanning electron microscopy to visualize their transmembrane tunnel structures. The expression of LTB in S. Enteritidis-LTB ghost preparations was confirmed by immunoblot and enzyme-linked immunosorbent assays. The parenteral adjuvant activity of LTB was demonstrated by immunizing chickens with either S. Enteritidis-LTB ghosts or S. Enteritidis ghosts. Chickens were intramuscularly primed at 5 weeks of age and subsequently boosted at 8 weeks of age. In total, 60 chickens were equally divided into three groups (n = 20 for each): group A, nonvaccinated control; group B, immunized with S. Enteritidis-LTB ghosts; and group C, immunized with S. Enteritidis ghosts. Compared with the nonimmunized chickens (group A), the immunized chickens (groups B and C) exhibited increased titers of plasma IgG and intestinal secretory IgA antibodies. The CD3+ CD4+ subpopulation of T cells was also significantly increased in both immunized groups. Among the immunized chickens, those in group B exhibited significantly increased titers of specific plasma IgG and intestinal secretory IgA (sIgA) antibodies compared with those in group C, indicating the immunomodulatory effects of the LTB adjuvant. Furthermore, both immunized groups exhibited decreased bacterial loads in their feces and internal organs. These results indicate that parenteral immunization with S. Enteritidis-LTB ghosts can stimulate superior induction of systemic and mucosal immune responses compared to immunization with S. Enteritidis ghosts alone, thus conferring efficient protection against salmonellosis.
Infection and Immunity | 2012
Chetan V. Jawale; Atul A. Chaudhari; Byung Woo Jeon; Rahul M. Nandre; John Hwa Lee
ABSTRACT A new strategy to develop an effective vaccine is essential to control food-borne Salmonella enterica serovar Enteritidis infections. Bacterial ghosts (BGs), which are nonliving, Gram-negative bacterial cell envelopes, are generated by expulsion of the cytoplasmic contents from bacterial cells through controlled expression using the modified cI857/λ PR/gene E expression system. In the present study, the pJHL99 lysis plasmid carrying the mutated lambda pR37-cI857 repressor and PhiX174 lysis gene E was constructed and transformed in S. Enteritidis to produce a BG. Temperature induction of the lysis gene cassette at 42°C revealed quantitative killing of S. Enteritidis. The S. Enteritidis ghost was characterized using scanning and transmission electron microscopy to visualize the transmembrane tunnel structure and loss of cytoplasmic materials, respectively. The efficacy of the BG as a vaccine candidate was evaluated in a chicken model using 60 10-day-old chickens, which were divided into four groups (n = 15), A, B, C, and D. Group A was designated as the nonimmunized control group, whereas the birds in groups B, C, and D were immunized via the intramuscular, subcutaneous, and oral routes, respectively. The chickens from all immunized groups showed significant increases in plasma IgG and intestinal secretory IgA levels. The lymphocyte proliferation response and CD3+ CD4+ and CD3+ CD8+ T cell subpopulations were also significantly increased in all immunized groups. The data indicate that both humoral and cell-mediated immune responses are robustly stimulated. Based on an examination of the protection efficacy measured by observations of gross lesions in the organs and bacterial recovery, the candidate vaccine can provide efficient protection against virulent challenge.
Vaccine | 2014
Chetan V. Jawale; Atul A. Chaudhari; John Hwa Lee
A safety enhanced Salmonella Gallinarum (SG) ghost was constructed using an antibiotic resistance gene free plasmid and evaluated its potential as fowl typhoid (FT) vaccine candidate. The antibiotic resistance free pYA3342 plasmid possesses aspartate semialdehyde dehydrogenase gene which is complimentary to the deletion of the chromosomal asd gene in the bacterial host. This plasmid was incorporated with a ghost cassette containing the bacteriophage PhiX174 lysis gene E, designated as pJHL101. The plasmid pJHL101 was transformed into a two virulence genes-deleted SG. The SG ghosts with tunnel formation and loss of cytoplasmic contents were observed by scanning electron microscopy and transmission electron microscopy. The cell viability of the culture solution was decreased to 0% at 24h after the induction of gene E expression by an increase in temperature from 37°C to 42°C. The safety and protective efficacy of the SG ghost vaccine was further examined in chickens which were divided into three groups: group A (non-immunized control), group B (orally immunized), and group C (intramuscularly immunized). The birds were immunized at 7d of age. No clinical symptoms associated with FT such as anorexia, depression and greenish diarrhea were observed in the immunized chickens. Upon challenge with a virulent SG strain at 3 week post-immunization, the chickens immunized with the SG ghost via various routes were efficiently protected, as shown by significantly lower mortality and post-mortem lesions in comparison with control group. In addition, all the immunized chickens showed significantly higher antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response along with significantly increased numbers of CD4⁺ and CD8⁺ T lymphocytes. Overall, our results provide a promising approach of generating SG ghosts using the antibiotic resistance free plasmid in order to prepare a non-living bacterial vaccine candidate which could be environmentally safe yet efficient to prevent FT in chickens.
Comparative Immunology Microbiology and Infectious Diseases | 2013
Rahul M. Nandre; Chetan V. Jawale; John Hwa Lee
Escherichia coli heat-labile enterotoxin B subunit (LTB) protein is a potent mucosal adjuvant. In this study, the effect of an attenuated Salmonella secreting LTB protein as an adjuvant strain (JOL1228) for a live Salmonella Enteritidis (SE) vaccine candidate (JOL919) was evaluated. In a single immunization experiment, chickens immunized with a mixture of JOL919 (5 parts) and JOL1228 (1 part) showed enhanced mucosal and cellular immune responses and efficient protection against salmonellosis as compared to those unimmunized control chickens. In further analysis, chickens were primed at one day of age and were boosted at the fifth week of age to prolong immune responses and to maximize the protection efficacy against salmonellosis. The immunized groups B (prime and booster with JOL919), C (prime with JOL919-JOL1228 mixture and booster with JOL919), and D (prime and booster with JOL919-JOL1228 mixture) showed significantly higher humoral and cellular immune responses as compared to those in the unimmunized control group A. In addition, immunized groups C and D showed fewer gross lesions in the liver and spleen and a lower number of SE-positive organs, with the lowest bacterial counts in the SE challenge strain as compared to the control group. These results indicate that SE vaccination with the LTB strain can have an adjuvant effect on the vaccine candidate by enhancing immune responses, and that a prime-boost strategy with the addition of the adjuvant strain can efficiently protect birds against salmonellosis.
Veterinary Microbiology | 2014
Chetan V. Jawale; Sam Woong Kim; John Hwa Lee
To avoid leaky expression of the bacterial host-toxic PhiX174 lysis gene E from the λpR promoter, a convergent promoter construct was made in which gene E was placed between a sense λpR promoter and an anti-sense P araBAD promoter. In the presence of l-arabinose, leaky transcription of lysis gene E at 28°C from the sense λpR promoter was repressed by an anti-sense RNA simultaneously expressed from the P araBAD promoter. The stringent repression of lysis gene E in the absence of induction temperature resulted into higher concentration of bacteria in culture suspension, and consequently higher and stable production of a Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenicity of the S. Enteritidis ghost was evaluated by immunizing chickens. Chickens from the immunized group demonstrated a significant increase in the levels of S. Enteritidis-specific plasma IgG, intestinal sIgA, and lymphocyte proliferative response. After virulent S. Enteritidis challenge, the immunized group exhibited decreased bacterial recovery from organs compared with the non-immunized group. Together, these results demonstrate that the stringent molecular control over leaky transcription of lysis gene E enabled the stable production of S. Enteritidis ghost, and immunization with the S. Enteritidis ghost can protect chickens by inducing robust humoral and cellular immune responses.
PLOS ONE | 2013
Chetan V. Jawale; John Hwa Lee
In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective vaccine against virulent S. Enteritidis infections.
Veterinary Immunology and Immunopathology | 2012
Byung Woo Jeon; Chetan V. Jawale; Seung Hwan Kim; John Hwa Lee
In our previous study, we constructed a vaccine candidate (JOL916) for fowl typhoid (FT). A live adjuvant Salmonella Gallinarum (SG) strain was generated in the present study to facilitate efficacious oral vaccination with this vaccine. The Escherichia coli eltB gene secreting heat-labile enterotoxin B subunit (LTB) was cloned into an Asd(+) plasmid pJHL65. This was transformed into a Δlon ΔcpxR Δasd SG strain and the resulting strain was designated JOL1229. Secretion of LTB from JOL1229 was confirmed with an immunoblot assay. To determine the optimal dose of the strain, 50 six-week-old female chickens were divided into five groups (Groups A-E, n=10 per group) and orally inoculated with various doses of JOL1229 and JOL916. In Group B (consisting of four parts JOL916 and one part JOL1229), significant cell-mediated immune responses, plasma IgG levels and intestinal secretary IgA levels were induced after inoculation with both strains. On challenge with the wild-type strain, significant reductions in mortality were observed in the group. In addition, after inoculation the LTB strain was not recovered in feces samples, and resulted in no, or very mild, gross lesions in the liver and spleen. Both CD4(+) and CD8(+) T-cells were significantly increased in peripheral blood samples from the chickens immunized with the LTB strain. Expression of the interleukin-6 (IL-6) gene in splenocytes was induced in the chickens immunized with the LTB strain. These results suggest that oral immunization with the LTB-adjuvant strain, in particular with the four parts JOL916 and one part JOL1229 mixture, increased the immune response and provided efficient protection against FT in chickens.
Comparative Immunology Microbiology and Infectious Diseases | 2014
Chetan V. Jawale; John Hwa Lee
The superior conservation of antigenic determinants on the surface of genetically inactivated bacterial ghosts makes them attractive immunogenic inactivated vaccine candidates. The efficacy of Salmonella Enteritidis (SE) ghost vaccination was evaluated in chickens by characterizing the nature of the adaptive immune response. Chickens from the immunized group demonstrated significant increases in SE-specific plasma IgG, intestinal secretory IgA, and lymphocyte proliferative response. The populations of CD4, CD8, and TCR γδ T-cells in immunized chickens were significantly greater than in the controls. Increased levels of IFN-γ, IL-2, IL-6 and IL-10 were observed in peripheral blood mononuclear cells stimulated with SE specific antigen. After virulent SE challenge, the immune system of immunized chickens was rapidly stimulated, as indicated by significantly increased population of CD4 and CD8 T-cells. Furthermore, the immunized group exhibited decreased challenge strain recovery of the internal organs compared to the non-immunized group. Together, these data indicate that the immunization induced humoral and cell-mediated immunity might be responsible for significant reduction of the virulent challenge strain load in the internal organs of immunized chickens.
Veterinary Journal | 2013
Rahul M. Nandre; Chetan V. Jawale; John Hwa Lee
This study evaluated the effect of Salmonella enterica serovar Enteritidis (SE) secreting Escherichia coli heat labile enterotoxin B subunit (LTB) protein as an adjuvant for a live SE vaccine (JOL919) against virulent SE challenge in hens. The eltB gene encoding LTB was inserted into the Asd+ β-lactamase signal plasmid pJHL65. This plasmid was transformed into ΔlonΔcpxRΔasd SE to generate the LTB strain JOL1228. One-hundred female domestic fowl were divided into five groups and hens in immunised groups were primed and subsequently boosted with either JOL919 or a JOL919-JOL1228 mixture. Humoral and cellular immune responses were significantly higher in the immunised groups than the control group. On challenge with virulent SE, egg protection was 89.3% in immunised hens in group B (primed and boosted twice with JOL919 only), 89.3% in group C (primed with JOL919-JOL1228 mixture and boosted twice with JOL919), 100% in group D (primed and first booster with JOL919-JOL1228 mixture, then subsequently boosted with JOL919), 90.5% in group E (primed and boosted twice with JOL919-JOL1228 mixture) and 60.7% in group A (control group of non-immunised hens inoculated with phosphate buffered saline). The challenge strain was detected significantly less in all organs examined from hens in group D than those of the control group. These results indicate that vaccination with JOL1228, especially when added to priming and first booster immunisations, may reduce egg contamination with SE.