Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chetana Sachidanandan is active.

Publication


Featured researches published by Chetana Sachidanandan.


Nature Medicine | 2008

BMP type I receptor inhibition reduces heterotopic ossification

Paul B. Yu; Donna Y. Deng; Carol S Lai; Charles C. Hong; Gregory D. Cuny; Mary L. Bouxsein; Deborah W Hong; Patrick M McManus; Takenobu Katagiri; Chetana Sachidanandan; Nobuhiro Kamiya; Tomokazu Fukuda; Yuji Mishina; Randall T. Peterson; Kenneth D. Bloch

Fibrodysplasia ossificans progressiva (FOP) is a congenital disorder of progressive and widespread postnatal ossification of soft tissues and is without known effective treatments. Affected individuals harbor conserved mutations in the ACVR1 gene that are thought to cause constitutive activation of the bone morphogenetic protein (BMP) type I receptor, activin receptor-like kinase-2 (ALK2). Here we show that intramuscular expression in the mouse of an inducible transgene encoding constitutively active ALK2 (caALK2), resulting from a glutamine to aspartic acid change at amino acid position 207, leads to ectopic endochondral bone formation, joint fusion and functional impairment, thus phenocopying key aspects of human FOP. A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.


Bioorganic & Medicinal Chemistry Letters | 2008

Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors

Gregory D. Cuny; Paul B. Yu; Joydev K. Laha; Xuechao Xing; Ji-Feng Liu; Carol S Lai; Donna Y. Deng; Chetana Sachidanandan; Kenneth D. Bloch; Randall T. Peterson

A structure-activity relationship study of dorsomorphin, a previously identified inhibitor of SMAD 1/5/8 phosphorylation by bone morphogenetic protein (BMP) type 1 receptors ALK2, 3, and 6, revealed that increased inhibitory activity could be accomplished by replacing the pendent 4-pyridine ring with 4-quinoline. The activity contributions of various nitrogen atoms in the core pyrazolo[1,5-a]pyrimidine ring were also examined by preparing and evaluating pyrrolo[1,2-a]pyrimidine and pyrazolo[1,5-a]pyridine derivatives. In addition, increased mouse liver microsome stability was achieved by replacing the ether substituent on the pendent phenyl ring with piperazine. Finally, an optimized compound 13 (LDN-193189 or DM-3189) demonstrated moderate pharmacokinetic characteristics (e.g., plasma t(1/2)=1.6h) following intraperitoneal administration in mice. These studies provide useful molecular probes for examining the in vivo pharmacology of BMP signaling inhibition.


Blood | 2011

Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation

Andrea U. Steinbicker; Chetana Sachidanandan; Ashley J. Vonner; Rushdia Z. Yusuf; Donna Y. Deng; Carol S Lai; Kristen M. Rauwerdink; Julia Winn; Borja Saez; Colleen Cook; Brian A. Szekely; Cindy N. Roy; Jasbir Seehra; Gregory D. Cuny; David T. Scadden; Randall T. Peterson; Kenneth D. Bloch; Paul B. Yu

Anemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling. We hypothesized that inhibiting BMP signaling can reduce hepcidin expression and ameliorate hypoferremia and anemia associated with inflammation. In human hepatoma cells, IL-6-induced hepcidin expression, an effect that was inhibited by treatment with a BMP type I receptor inhibitor, LDN-193189, or BMP ligand antagonists noggin and ALK3-Fc. In zebrafish, the induction of hepcidin expression by transgenic expression of IL-6 was also reduced by LDN-193189. In mice, treatment with IL-6 or turpentine increased hepcidin expression and reduced serum iron, effects that were inhibited by LDN-193189 or ALK3-Fc. Chronic turpentine treatment led to microcytic anemia, which was prevented by concurrent administration of LDN-193189 or attenuated when LDN-193189 was administered after anemia was established. Our studies support the concept that BMP and IL-6 act together to regulate iron homeostasis and suggest that inhibition of BMP signaling may be an effective strategy for the treatment of anemia of inflammation.


Database | 2013

lncRNome: a comprehensive knowledgebase of human long noncoding RNAs

Deeksha Bhartiya; Koustav Pal; Sourav Ghosh; Shruti Kapoor; Saakshi Jalali; Bharat Panwar; Sakshi Jain; Satish Sati; Shantanu Sengupta; Chetana Sachidanandan; Gajendra P. S. Raghava; Sridhar Sivasubbu; Vinod Scaria

The advent of high-throughput genome scale technologies has enabled us to unravel a large amount of the previously unknown transcriptionally active regions of the genome. Recent genome-wide studies have provided annotations of a large repertoire of various classes of noncoding transcripts. Long noncoding RNAs (lncRNAs) form a major proportion of these novel annotated noncoding transcripts, and presently known to be involved in a number of functionally distinct biological processes. Over 18 000 transcripts are presently annotated as lncRNA, and encompass previously annotated classes of noncoding transcripts including large intergenic noncoding RNA, antisense RNA and processed pseudogenes. There is a significant gap in the resources providing a stable annotation, cross-referencing and biologically relevant information. lncRNome has been envisioned with the aim of filling this gap by integrating annotations on a wide variety of biologically significant information into a comprehensive knowledgebase. To the best of our knowledge, lncRNome is one of the largest and most comprehensive resources for lncRNAs. Database URL: http://genome.igib.res.in/lncRNome


PLOS ONE | 2008

Identification of a Novel Retinoid by Small Molecule Screening with Zebrafish Embryos

Chetana Sachidanandan; Jing-Ruey J. Yeh; Quinn P. Peterson; Randall T. Peterson

Small molecules have played an important role in delineating molecular pathways involved in embryonic development and disease pathology. The need for novel small molecule modulators of biological processes has driven a number of targeted screens on large diverse libraries. However, due to the specific focus of such screens, the majority of the bioactive potential of these libraries remains unharnessed. In order to identify a higher proportion of compounds with interesting biological activities, we screened a diverse synthetic library for compounds that perturb the development of any of the multiple organs in zebrafish embryos. We identified small molecules that affect the development of a variety of structures such as heart, vasculature, brain, and body-axis. We utilized the previously known role of retinoic acid in anterior-posterior (A–P) patterning to identify the target of DTAB, a compound that caused A–P axis shortening in the zebrafish embryo. We show that DTAB is a retinoid with selective activity towards retinoic acid receptors γ and β. Thus, conducting zebrafish developmental screens using small molecules will not only enable the identification of compounds with diverse biological activities in a large chemical library but may also facilitate the identification of the target pathways of these biologically active molecules.


Expert Opinion on Drug Discovery | 2012

Conceptual approaches for lncRNA drug discovery and future strategies

Deeksha Bhartiya; Shruti Kapoor; Saakshi Jalali; Satish Sati; Kriti Kaushik; Chetana Sachidanandan; Sridhar Sivasubbu; Vinod Scaria

Introduction: Long non-coding RNAs (lncRNAs) are a recently discovered class of non-coding functional RNA which has attracted immense research interest. The growing corpus of literature in the field provides ample evidence to suggest the important role of lncRNAs as regulators in a wide spectrum of biological processes. Recent evidence also suggests the role of lncRNAs in the pathophysiology of disease processes. Areas covered: The authors discuss a conceptual framework for understanding lncRNA-mediated regulation as a function of its interaction with other biomolecules in the cell. They summarize the mechanisms of the known functions of lncRNAs in light of this conceptual framework, and suggest how this insight could help in discovering novel targets for drug discovery. They also argue how certain emerging technologies could be of immense utility, both in discovering potential therapeutic targets as well as in further therapeutic development. Expert opinion: The authors propose how the field could immensely benefit from methodologies and technologies from six emerging fields in molecular and computational biology. They also suggest a futuristic area of lncRNAs design as a potential offshoot of synthetic biology, which would be an attractive field, both for discovery of targets as well as a therapeutic strategy.


Cardiovascular Research | 2012

In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling

Jason R. Becker; Tamara Y. Robinson; Chetana Sachidanandan; Amy E. Kelly; Shannon Coy; Randall T. Peterson; Calum A. MacRae

AIMS Despite increased understanding of the fundamental biology regulating cardiomyocyte hypertrophy and heart failure, it has been challenging to find novel chemical or genetic modifiers of these pathways. Traditional cell-based methods do not model the complexity of an intact cardiovascular system and mammalian models are not readily adaptable to chemical or genetic screens. Our objective was to create an in vivo model suitable for chemical and genetic screens for hypertrophy and heart failure modifiers. METHODS AND RESULTS Using the developing zebrafish, we established that the cardiac natriuretic peptide genes (nppa and nppb), known markers of cardiomyocyte hypertrophy and heart failure, were induced in the embryonic heart by pathological cardiac stimuli. This pathological induction was distinct from the developmental regulation of these genes. We created a luciferase-based transgenic reporter line that accurately modelled the pathological induction patterns of the zebrafish nppb gene. Utilizing this reporter line, we were able to show remarkable conservation of pharmacological responses between the larval zebrafish heart and adult mammalian models. CONCLUSION By performing a focused screen of chemical agents, we were able to show a distinct response of a genetic model of hypertrophic cardiomyopathy to the histone deacetylase inhibitor, Trichostatin A, and the mitogen-activated protein kinase kinase 1/2 inhibitor, U0126. We believe this in vivo reporter line will offer a unique approach to the identification of novel chemical or genetic regulators of myocardial hypertrophy and heart failure.


Scientific Reports | 2016

Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

S. Shashank Chetty; S. Praneetha; Sandeep Basu; Chetana Sachidanandan; A. Vadivel Murugan

Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).


Journal of Genetics | 2013

Time for the zebrafish ENCODE.

Sridhar Sivasubbu; Chetana Sachidanandan; Vinod Scaria

Genomics research in recent years, especially the human ENCODE project, have made great strides in understanding the genomic and epigenomic structure and organization of humans. These advances promise a new era of precision medicine, through a better understanding of the genomic correlates of human physiology and promise to offer precise and personalized preventive and therapeutic options. The translation of genome-scale maps of genomic and epigenomic markers to clinically relevant information and further to medical practice await functional validation of the genomic features identified through these large-scale efforts. Such studies must essentially be done in model systems where it is possible to model physiological and pathological processes and enquire how they could be modulated by genomic elements and epigenomic signatures. The availability of large number of personal genomes and maps of genomic variations at population scale has created an acute necessity for model systems to model phenotypic and molecular effects of variations, especially in regulatory regions. Efforts to create orthologous maps have been underway in other model systems including Caenorhabditis elegans and Drosophila through the modENCODE programe and in Mus musculus through the mouse ENCODE. We propose that the enormous wealth of disease models and excellent tools to engineer genomes in zebrafish could be effectively capitalized towards making it an effective and widely used model system for precision medicine. This would be possible only through a concerted and systematic effort to create orthologous genomic and epigenomic maps for zebrafish.We discuss how the present understanding and genome-scale methodologies available in this model organism could be effectively used towards realizing this goal.


Database | 2014

The Zebrafish GenomeWiki: a crowdsourcing approach to connect the long tail for zebrafish gene annotation.

Meghna Singh; Deeksha Bhartiya; Jayant Maini; Meenakshi Sharma; Angom Ramcharan Singh; Subburaj Kadarkaraisamy; Rajiv Rana; Ankit Sabharwal; Srishti Nanda; Ashish Mittal; Shruti Kapoor; Paras Sehgal; Zainab Asad; Kriti Kaushik; Shamsudheen Karuthedath Vellarikkal; Divya Jagga; Muthulakshmi Muthuswami; Rajendra Kumar Chauhan; Elvin Leonard; Ruby Priyadarshini; Mahantappa Halimani; Sunny Malhotra; Ashok Patowary; Harinder Vishwakarma; Prateek Joshi; Vivek Bhardwaj; Arijit Bhaumik; Bharat Bhatt; Aamod Jha; Aalok Kumar

A large repertoire of gene-centric data has been generated in the field of zebrafish biology. Although the bulk of these data are available in the public domain, most of them are not readily accessible or available in nonstandard formats. One major challenge is to unify and integrate these widely scattered data sources. We tested the hypothesis that active community participation could be a viable option to address this challenge. We present here our approach to create standards for assimilation and sharing of information and a system of open standards for database intercommunication. We have attempted to address this challenge by creating a community-centric solution for zebrafish gene annotation. The Zebrafish GenomeWiki is a ‘wiki’-based resource, which aims to provide an altruistic shared environment for collective annotation of the zebrafish genes. The Zebrafish GenomeWiki has features that enable users to comment, annotate, edit and rate this gene-centric information. The credits for contributions can be tracked through a transparent microattribution system. In contrast to other wikis, the Zebrafish GenomeWiki is a ‘structured wiki’ or rather a ‘semantic wiki’. The Zebrafish GenomeWiki implements a semantically linked data structure, which in the future would be amenable to semantic search. Database URL: http://genome.igib.res.in/twiki

Collaboration


Dive into the Chetana Sachidanandan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Yu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deeksha Bhartiya

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Shruti Kapoor

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Kriti Kaushik

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge