Chetna Tyagi
Jawaharlal Nehru University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chetna Tyagi.
Gene | 2016
Bharati Pandey; Sonam Grover; Chetna Tyagi; Sukriti Goyal; Salma Jamal; Aditi Singh; Jagdeep Kaur; Abhinav Grover
The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA.
BioMed Research International | 2014
Manisha Goyal; Jaspreet Kaur Dhanjal; Sukriti Goyal; Chetna Tyagi; Rabia Hamid; Abhinav Grover
Alzheimers (AD) is the leading cause of dementia among elderly people. Considering the complex heterogeneous etiology of AD, there is an urgent need to develop multitargeted drugs for its suppression. β-amyloid cleavage enzyme (BACE-1) and acetylcholinesterase (AChE), being important for AD progression, have been considered as promising drug targets. In this study, a robust and highly predictive group-based QSAR (GQSAR) model has been developed based on the descriptors calculated for the fragments of 20 1,4-dihydropyridine (DHP) derivatives. A large combinatorial library of DHP analogues was created, the activity of each compound was predicted, and the top compounds were analyzed using refined molecular docking. A detailed interaction analysis was carried out for the top two compounds (EDC and FDC) which showed significant binding affinity for BACE-1 and AChE. This study paves way for consideration of these lead molecules as prospective drugs for the effective dual inhibition of BACE-1 and AChE. The GQSAR model provides site-specific clues about the molecules where certain modifications can result in increased biological activity. This information could be of high value for design and development of multifunctional drugs for combating AD.
PLOS ONE | 2016
Sharad Verma; Sonam Grover; Chetna Tyagi; Sukriti Goyal; Salma Jamal; Aditi Singh; Abhinav Grover
p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy.
BMC Genomics | 2014
Chetna Tyagi; Ankita Gupta; Sukriti Goyal; Jaspreet Kaur Dhanjal; Abhinav Grover
BackgroundA number of microtubule disassembly blocking agents and inhibitors of tubulin polymerization have been elements of great interest in anti-cancer therapy, some of them even entering into the clinical trials. One such class of tubulin assembly inhibitors is of arylthioindole derivatives which results in effective microtubule disorganization responsible for cell apoptosis by interacting with the colchicine binding site of the β-unit of tubulin close to the interface with the α unit. We modelled the human tubulin β unit (chain D) protein and performed docking studies to elucidate the detailed binding mode of actions associated with their inhibition. The activity enhancing structural aspects were evaluated using a fragment-based Group QSAR (G-QSAR) model and was validated statistically to determine its robustness. A combinatorial library was generated keeping the arylthioindole moiety as the template and their activities were predicted.ResultsThe G-QSAR model obtained was statistically significant with r2 value of 0.85, cross validated correlation coefficient q2 value of 0.71 and pred_r2 (r2 value for test set) value of 0.89. A high F test value of 65.76 suggests robustness of the model. Screening of the combinatorial library on the basis of predicted activity values yielded two compounds HPI (predicted pIC50 = 6.042) and MSI (predicted pIC50 = 6.001) whose interactions with the D chain of modelled human tubulin protein were evaluated in detail. A toxicity evaluation resulted in MSI being less toxic in comparison to HPI.ConclusionsThe study provides an insight into the crucial structural requirements and the necessary chemical substitutions required for the arylthioindole moiety to exhibit enhanced inhibitory activity against human tubulin. The two reported compounds HPI and MSI showed promising anti cancer activities and thus can be considered as potent leads against cancer. The toxicity evaluation of these compounds suggests that MSI is a promising therapeutic candidate. This study provided another stepping stone in the direction of evaluating tubulin inhibition and microtubule disassembly degeneration as viable targets for development of novel therapeutics against cancer.
BMC Genomics | 2013
Chetna Tyagi; Sonam Grover; Jaspreet Kaur Dhanjal; Sukriti Goyal; Manisha Goyal; Abhinav Grover
BackgroundDevelopment of a cancerous cell takes place when it ceases to respond to growth-inhibiting signals and multiplies uncontrollably and can detach and move to other parts of the body; the process called as metastasis. A particular set of cysteine proteases are very active during cancer metastasis, Cathepsins being one of them. They are involved in tumor growth and malignancy and have also been reported to be overexpressed in tumor cell lines. In the present study, a combinatorial approach comprising three-dimensional quantitative structure-activity relationship (3D QSAR), ligand-based pharmacophore modelling and search followed by cathepsin L structure-based high throughput screening was carried out using an initial set of 28 congeneric thiosemicarbazone derivatives as cathepsin L inhibitors. A 3D QSAR was derived using the alignment of a common thiosemicarbazone substructure. Essential structural features responsible for biological activity were taken into account for development of a pharmacophore model based on 29 congeneric thiosemicarbazone derivatives. This model was used to carry out an exhaustive search on a large dataset of natural compounds. A further cathepsin L structure-based screen identified two top scoring compounds as potent anti-cancer leads.ResultsThe generated 3D QSAR model showed statistically significant results with an r2 value of 0.8267, cross-validated correlation coefficient q2 of 0.7232, and a pred_r2 (r2 value for test set) of 0.7460. Apart from these, a high F test value of 30.2078 suggested low probability of the models failure. The pharmacophoric hypothesis chosen for searching the natural compound libraries was identified as DDHRR, where two Ds denote 2 hydrogen donors, H represents a hydrophobic group and two Rs represent aromatic rings, all of which are essential for the biological activity. We report two potential drug leads ZINC08764437 (NFP) and ZINC03846634 (APQ) obtained after a combined approach of pharmacophore-based search and structure-based virtual screen. These two compounds displayed extra precision docking scores of -7.972908 and -7.575686 respectively suggesting considerable binding affinity for cathepsin L. High activity values of 5.72 and 5.75 predicted using the 3D QSAR model further substantiated the inhibitory potential of these identified leads.ConclusionThe present study attempts to correlate the structural features of thiosemicarbazone group with their biological activity by development of a robust 3D QSAR model. Being statistically valid, this model provides near accurate values of the activities predicted for the congeneric set on which it is based. These predicted activities are good for the test set compounds making it indeed a statistically sound 3D QSAR model. The identified pharmacophore model DDHRR.8 comprised of all the essential features required to interact with the catalytic triad of cathepsin L. A search for natural compounds based on this pharmacophore followed by docking studies further screened out two top scoring candidates: NFP and AFQ. The high binding affinity and presence of essential structural features in these two compounds make them ideal for consideration as natural anti-tumoral agents. Activity prediction using 3D QSAR model further validated their potential as worthy drug candidates against cathepsin L for treatment of cancer.
Chemical Biology & Drug Design | 2014
Sukriti Goyal; Jaspreet Kaur Dhanjal; Chetna Tyagi; Manisha Goyal; Abhinav Grover
The CRK3 cyclin‐dependent kinase of Leishmania plays an important role in regulating the cell‐cycle progression at the G2/M phase checkpoint transition, proliferation, and viability inside the host macrophage. In this study, a novel fragment‐based QSAR model has been developed using 22 pyrazole‐derived compounds exhibiting inhibitory activity against Leishmanial CRK3. Unlike other QSAR methods, this fragment‐based method gives flexibility to study the relationship between molecular fragments of interest and their contribution for the variation in the biological response by evaluating cross‐term fragment descriptors. Based on the fragment‐based QSAR model, a combinatorial library was generated, and top two compounds were reported after predicting their activity. The QSAR model showed satisfactory statistical parameters for the data set (r2 = 0.8752, q2 = 0.6690, F‐ratio = 30.37, and pred_r2 = 0.8632) with four descriptors describing the nature of substituent groups and the environment of the substitution site. Evaluation of the model implied that electron‐rich substitution at R1 position improves the inhibitory activity, while decline in inhibitory activity was observed in presence of nitrogen at R2 position. The analysis carried out in this study provides a substantial basis for consideration of the designed pyrazole‐based leads as potent antileishmanial drugs.
Journal of Molecular Graphics & Modelling | 2014
Sukriti Goyal; Sonam Grover; Jaspreet Kaur Dhanjal; Chetna Tyagi; Manisha Goyal; Abhinav Grover
Tumour suppressor p53 is known to play a central role in prevention of tumour development, DNA repair, senescence and apoptosis which is in normal cells maintained by negative feedback regulator MDM2 (Murine Double Minute 2). In case of dysfunctioning of this regulatory loop, tumour development starts thus resulting in cancerous condition. Inhibition of p53-MDM2 binding would result in activation of the tumour suppressor. In this study, a novel robust fragment-based QSAR model has been developed for piperidinone derived compounds experimentally known to inhibit p53-MDM2 interaction. The QSAR model developed showed satisfactory statistical parameters for the experimentally reported dataset (r(2)=0.9415, q(2)=0.8958, pred_r(2)=0.8894 and F-test=112.7314), thus judging the robustness of the model. Low standard error values (r(2)_se=0.3003, q(2)_se=0.4009 and pred_r(2)_se=0.3315) confirmed the accuracy of the developed model. The regression equation obtained constituted three descriptors (R2-DeltaEpsilonA, R1-RotatableBondCount and R2-SssOCount), two of which had positive contribution while third showed negative correlation. Based on the developed QSAR model, a combinatorial library was generated and activities of the compounds were predicted. These compounds were docked with MDM2 and two top scoring compounds with binding affinities of -10.13 and -9.80kcal/mol were selected. The binding modes of actions of these complexes were analyzed using molecular dynamics simulations. Analysis of the developed fragment-based QSAR model revealed that addition of unsaturated electronegative groups at R2 site and groups with more rotatable bonds at R1 improved the inhibitory activity of these potent lead compounds. The detailed analysis carried out in this study provides a considerable basis for the design and development of novel piperidinone-based lead molecules against cancer and also provides mechanistic insights into their mode of actions.
Journal of Biomolecular Structure & Dynamics | 2016
Siddharth Sinha; Chetna Tyagi; Sukriti Goyal; Salma Jamal; Pallavi Somvanshi; Abhinav Grover
Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington’s and Ataxia’s. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r2 value of .6297, cross-validated co-relation coefficient q2 value of .5905 and pred_r2 (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia.
Computational Biology and Chemistry | 2015
Kunal Patel; Chetna Tyagi; Sukriti Goyal; Salma Jamal; Divya Wahi; Ritu Jain; Navneeta Bharadvaja; Abhinav Grover
Drug resistant tuberculosis has threatened all the advances that have been made in TB control at the global stage in the last few decades. DNA gyrase enzymes are an excellent target for antibacterial drug discovery as they are involved in essential functions like DNA replication. Here we report, a successful application of high throughput virtual screening (HTVS) to identify an inhibitor of Mycobacterium DNA gyrase targeting the wild type and the most prevalent three double mutants of quinolone resistant DNA gyrase namely A90V+D94G, A74S+D94G and A90V+S91P. HTVS of 179.299 compounds gave five compounds with significant binding affinity. Extra presicion (XP) docking and MD simulations gave a clear view of their interaction pattern. Among them, chebulinic acid (CA), a phytocompound obtained from Terminalia chebula was the most potent inhibitor with significantly high XP docking score, -14.63, -16.46, -15.94 and -15.11 against wild type and three variants respectively. Simulation studies for a period of 16 ns indicated stable DNA gyrA-CA complex formation. This stable binding would result in inhibition of the enzyme by two mechanisms. Firstly, binding of CA causes displacement of catalytic Tyr129 away from its target DNA-phosphate molecule from 1.6 Å to 3.8-7.3 Å and secondly, by causing steric hindrance to the binding of DNA strand at DNA binding site of enzyme. The combined effect would result in loss of cleavage and religation activity of enzyme leading to bactericidal effect on tuberculosis. This phytocompound displays desirable quality for carrying forward as a lead compound for anti-tuberculosis drug development. The results presented here are solely based on computations and need to be validated experimentally in order to assert the proposed mechanism of action.
BioMed Research International | 2013
Manisha Goyal; Sonam Grover; Jaspreet Kaur Dhanjal; Sukriti Goyal; Chetna Tyagi; Sajeev Chacko; Abhinav Grover
A major genetic suspect for Alzheimers disease is the pathological conformation assumed by apolipoprotein E4 (ApoE4) through intramolecular interaction. In the present study, a large library of natural compounds was screened against ApoE4 to identify novel therapeutic molecules that can prevent ApoE4 from being converted to its pathological conformation. We report two such natural compounds PHC and IAH that bound to the active site of ApoE4 during the docking process. The binding analysis suggested that they have a strong mechanistic ability to correct the pathological structural orientation of ApoE4 by preventing repulsion between Arg 61 and Arg 112, thus inhibiting the formation of a salt bridge between Arg 61 and Glu 255. However, when the molecular dynamics simulations were carried out, structural changes in the PHC-bound complex forced PHC to move out of the cavity thus destabilizing the complex. However, IAH was structurally stable inside the binding pocket throughout the simulations trajectory. Our simulations results indicate that the initial receptor-ligand interaction observed after docking could be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favored and should be better representations of derivative poses in the receptor.