Chi-Chung Chou
National Chung Hsing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chi-Chung Chou.
Drug Metabolism and Disposition | 2005
Jen Hung Yang; Te Chun Hsia; Hsiu Maan Kuo; Pei-Dawn Lee Chao; Chi-Chung Chou; Yau-Huei Wei; Jing Gung Chung
Lung cancer is the leading cause of cancer death in many developed countries, including Taiwan. Quercetin, a widely distributed bioflavonoid, is well known to induce growth inhibition in a variety of human cancer cells. Quercetin glucuronides are the main circulating metabolites after dietary supplements with quercetin in humans. However, there is little information available as to how quercetin glucuronides affect human cancer cells. We investigated the effects of quercetin glucuronides in a human lung cancer cell line NCI-H209. We checked the cell viability, cell cycle checkpoint proteins, pro- and antiapoptotic proteins, caspase-3 activity, and gene expression by flow cytometry and Western blot. The viability of cells decreased in a dose- and time-dependent manner. Cell cycle analysis revealed a significant increase of the proportion of cells in G2/M phase and subG0/G1 phase (corresponding to apoptotic cells). Moreover, quercetin glucuronides increased the expressions of cyclin B, Cdc25c-ser-216-p, and Wee1 proteins, indicating the G2/M arrest. We also demonstrated a concurrent decrease of the mitochondrial membrane potential, release of cytochrome c, up-regulation of Bax, down-regulation of Bcl-2, and activation of caspase-3, and subsequently, cleavage of poly(ADP-ribose) polymerase. In addition, quercetin glucuronide-induced apoptosis was totally blocked by the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone. Taken together, we demonstrated that quercetin glucuronides inhibited proliferation through G2/M arrest of the cell cycle and induced apoptosis via caspase-3 cascade in the human lung cancer cell line NCI-H209. Delineation of the biological effects of specific major quercetin metabolites on chemotherapeutic potential or chemoprevention of human cancers warrants further investigation.
Toxicologic Pathology | 2009
Kun-Chao Chen; Chen-Wei Liao; Fen-Pang Cheng; Chi-Chung Chou; Shih-Chien Chang; Jhaol-Huei Wu; Jyh-Myng Zen; Yng Tay Chen; Jiunn-Wang Liao
Outbreaks of food-associated renal failure in pets occurred in Asia and the United States of America in 2004 and 2007. They were related to the combined intoxication of cyanuric acid and melamine. Our aims were to investigate cyanuric acid and melamine contamination of pet food and to examine subchronic toxicity in rats. Levels of 10%, 20%, 50%, and 50%–100% (w/w) of contaminated pet food were fed to rats for three months. Analytical results revealed that the tainted food contained significant levels of cyanuric acid and melamine in a ratio of 1:6.8. Rats fed the diet of 50%–100% for three months exhibited elevated serum blood urea nitrogen and creatinine, as well as dose-dependent melamine/cyanuric acid crystal-induced nephrotoxicity. The melamine/cyanuric acid crystals of various sizes were mixed with necrotic cell debris and inflammatory cells, accompanied by tubular dilation and interstitial fibrosis. The immunohistochemistry index of proliferative cellular nuclear antigen and osteopontin in the kidney of the 50%–100% group were elevated, indicating regeneration of renal cells and the formation of crystals. In conclusion, the combination ratio of cyanuric acid to melamine and the acidic urine content were two factors that, upon repeated exposure, determined the severity of the nephrotoxicity.
Analytica Chimica Acta | 2012
Pei-Cheng Wang; Ren-Jye Lee; Chung-Yu Chen; Chi-Chung Chou; Maw-Rong Lee
A rapid and sensitive method has been developed for the simultaneous detection of cyromazine and melamine in chicken eggs using the quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimal extraction solvent for the liquid-liquid extraction was 5 mL of acetonitrile with a 0.1 M hydrochloric acid aqueous solution (99.5:0.5, v/v). The extract was cleaned with 0.5 g of anhydrous magnesium sulfate and 10 mg of graphitized carbon black. The analysis of cyromazine and melamine was accomplished by combining the use of an anion exchange LC column with tandem mass spectrometry in the positive electrospray ionization mode with selected reaction monitoring mode (SRM). The detection limits were 1.6 ng g(-1) for cyromazine and 8 ng g(-1) for melamine, and the quantitation limits were 5.5 ng g(-1) for cyromazine and 25 ng g(-1) for melamine. The recoveries of cyromazine and melamine in the spiked egg samples were 83.2% and 104.6%, respectively, with an relative standard deviation (RSD) of less than 18.1%. The intra-day and inter-day precisions, represented by the RSD, ranged from 1.5% to 8.8% and 6.8% to 14.3%, respectively. The proposed method was tested by analyzing chicken eggs from the markets and from the veterinary medicine laboratory. The concentrations of cyromazine and melamine detected in these samples were in the range of 20-94 ng g(-1). The results demonstrated that the QuEChERS method combined with LC-MS/MS is a simple, rapid and inexpensive method for the analysis of cyromazine and melamine in eggs.
Archives of Virology | 2011
Sue-Min Huang; Chen Tu; Chun-Hsien Tseng; Chin-Cheng Huang; Chi-Chung Chou; Hung-Chih Kuo; Shao-Kuang Chang
To investigate the genetic relationships between field strains of iridoviruses gathered from various fish species in Taiwan, viruses that were collected from 2001 to 2009 were analyzed. Open reading frames encoding the viral major capsid protein (MCP) and adenosine triphosphatase (ATPase) were sequenced for phylogenetic analysis. Our results indicated that iridoviruses from Taiwan aquaculture fishes could be classified into two groups: prior to 2005, the viruses were closely related to members of the genus Ranavirus; and after 2005, they were similar to members of the genus Megalocytivirus. Based on the analysis of MCP amino acid sequences, virus isolates were divided into 4 major genotypes that were related to ISKNV, RSIV, FLIV, and GIV, respectively. Pairwise comparisons of MCP genes showed that the ranavirus was an epidemic pathogen for economically important species in the major production regions and cultured marine fish, while the megalocytivirus isolates were sensitive to host range. In addition, the distribution of synonymous and non-synonymous changes in the MCP gene revealed that the iridoviruses were evolving slowly, and most of the variations were synonymous mutations. The Ka/Ks values were lower than one, and hence, the viruses were under negative selection.
Journal of Pharmaceutical and Biomedical Analysis | 2010
Catherine A. Franje; Shao-Kuang Chang; Ching-Lin Shyu; Jennifer L. Davis; Yan-Wen Lee; Ren-Jye Lee; Chao-Chin Chang; Chi-Chung Chou
Heat stability of amphenicols and the relationship between structural degradation and antimicrobial activity after heating has not been well investigated. Florfenicol (FF), thiamphenicol (TAP), and chloramphenicol (CAP) were heated at 100 degrees C in water, salt water, soybean sauce and chicken meat for up to 2h. Degradation and antimicrobial activity of the compounds was evaluated using capillary electrophoresis (CE) with UV-DAD spectrometry, minimum inhibitory concentration (MIC) assay, and gas chromatography with electron impact ionization mass spectrometry (GC-EI-MS). Heat stability of amphenicols in matrices was ranked as water> or =salt water>soybean sauce>meat, suggesting that heat degradation of amphenicols was accelerated in soybean sauce and was not protected in meat. Heat stability by drug and matrices was ranked as FF>TAP=CAP in water, FF=TAP>CAP in salt water, TAP> or =FF=CAP in soybean sauce, and TAP> or =FF=CAP in meat, indicating differential heat stability of amphenicols among the 3 drugs and in different matrices. In accordance with the less than 20% degradation, the MIC against Escherichia coli and Staphylococcus aureus did not change after 2h heating in water. A 5-min heating of amphenicols in water by microwave oven generated comparable percentage degradation to boiling in water bath for 30 min to 1h. Both CE and GC-MS analysis showed that heating of FF produced TAP but not FF amine as one of its breakdown products. In conclusion, despite close similarity in structure; amphenicols exhibited differential behavior toward heating degradation in solutions and protein matrices. Although higher degradations of amphenicols were observed in soybean sauce and meat, heating treatment may generate product with antimicrobial activity (FF to TAP), therefore, heating of amphenicol residues in food cannot always be assumed safe.
Journal of Veterinary Pharmacology and Therapeutics | 2010
Shao-Kuang Chang; Jennifer L. Davis; C. N. Cheng; R. H. Shien; M. K. Hsieh; B.-W. Koh; Chi-Chung Chou
Florfenicol (Ff) is a synthetic antibiotic with a broad antibacterial spectrum and high therapeutic effectiveness that was specifically developed for veterinary use. In the present study, tissue residual levels and the pharmacokinetics of Ff after oral administration of 30 mg/kg to Leghorn and Taiwan Native chicken were studied. Furthermore, differential pharmacokinetics between leg and breast muscles were compared using samples collected from an optimized microdialysis model designed for avian species. Significant differences in C(max) were detected between the plasma and muscle microdialysates, and between the breast and leg microdialysates of the Leghorn chickens by noncompartmental pharmacokinetic analysis. After a single oral dose of Ff at 30 mg/kg, the drug was quickly absorbed and widely distributed with tissue penetration factors significantly different between leg and breast muscles. The serum protein binding of Ff was estimated to be 16.8 ± 1.2%. Significant breed differences in tissue depletion were noted and characterized by higher Ff concentration in the brain, lung, kidney and at least 12 h longer resident times in kidney, heart and spleen for Taiwan Native chicken. Results from this investigation demonstrate the practicality of using in vivo microdialysis in chickens for pharmacokinetic studies and reveal significant time-dependent differences in the free concentrations of Ff in leg and breast muscles. The tissue depletion study signified breed differences in tissue residue concentration and detection times between Leghorn and Taiwan Native chickens. Therefore, currently used withdrawal times for Ff in chickens can not be assumed safe for Taiwan Native chickens.
Poultry Science | 2008
L.-C. Yeh; Wei-Ming Lee; B.-W. Koh; J. P. Chan; C.-H. Liu; J.-P. Kao; Chi-Chung Chou
A sensitive ELISA was developed for the detection of amoxicillin (AMX) in serum, urine, and milk. The ELISA used an indirect competitive method produced by coating the plate with ovalbumin conjugated with AMX hapten. Antibodies against AMX-BSA were detected by a goat-antirabbit antibody conjugated with peroxidase. Calibration standard curves ranged from 1.28 ng/mL to 20 microg/mL [IC(50) (inhibition concentration 50%) = 100 ng/mL], and the limits of detection were 1.3, 2.7, and 4.8 ng/mL for urine, milk, and serum, respectively. The intra- and interassay variations were less than 4 and 9.6%. The antibody produced against AMX cross-reacted highly with penicillin G (77%); cross-reacted moderately with ampicillin, oxacillin, and cloxacillin (56.9, 51.4, and 48.8%, respectively); but was considered non-cross-reactive with dicloxacillin (7.4%), cefadroxil (<1%), and cefazolin (<1%). Concentrations of AMX were measured simultaneously in venous blood and muscles by using the developed AMX ELISA in an in vivo microdialysis model designed for pigeons. Following i.m. injection (25 mg/kg), AMX attained a peak blood level of 4.74 +/-0.30 mu g/mL and decreased with a half-life of 2.38 +/-0.16 h. In contrast, measurements in pectoral and femoral muscles exhibited delayed appearances, reduced peak concentrations, and prolonged half-lives of 4.07 +/-0.48 (pectoral) and 3.01 +/-0.26 (femoral) that were significantly different from each other and those in the blood (P < 0.05). Blood protein binding was calculated to be 27.9 +/-5.7%. This study demonstrated the semiquantitative application of a selective AMX ELISA in the first microdialysis procedure for continuous monitoring of drug levels in specific tissues of pigeons and maybe useful for related studies in other poultry species.
Journal of Veterinary Pharmacology and Therapeutics | 2008
Thomas W. Vickroy; Shao-Kuang Chang; Chi-Chung Chou
The goals of this study were to elucidate the temporal and quantitative relationships between caffeine and its major bioactive metabolites in blood and cerebrospinal fluid (CSF) and to characterize the pharmacokinetic-pharmacodynamic relationship for caffeine-induced changes in spontaneous locomotor activity in the horse. We hypothesized that caffeine and its metabolites distribute efficiently into the CSF to antagonize adenosine A1 and A2a receptors and that spontaneous locomotor activity correlates well with caffeine and/or metabolite concentrations in CSF and blood. A microdialysis system was developed to allow simultaneous monitoring of locomotor activity and collection of CSF and blood samples for pharmacokinetic analysis. CSF concentrations of caffeine and its metabolites were evaluated to determine the percentage of central adenosine receptor blockade by the established standard inhibition curves. Caffeine increased the spontaneous locomotor activity for up to 4 h in a dose-dependent manner. After 3 mg/kg caffeine administration, blood caffeine concentration as well as locomotor activity increased sharply to near peak level while CSF caffeine concentrations exhibited a slow rise to a steady-state 75 min later. High correlation coefficient was found between locomotor activity and caffeine concentrations in blood (R(2 )=0.95) and in CSF (R(2) = 0.93). At 3 mg/kg dosage, theophylline was the only detectable caffeine metabolite in the CSF. The concentrations reached in the CSF were sufficient to partially block central adenosine A1 (14% blockade) and A2a (11% blockade) receptors. There were no statistically significant differences between the pharmacokinetics of caffeine in the blood and CSF. This study provides novel evidence that locomotor stimulation in horses is closely correlated with caffeine concentrations in the blood and CSF and, furthermore, is consistent with blockade of central adenosine receptors.
Journal of the Science of Food and Agriculture | 2012
Han-Yun Hsieh; Ching-Lin Shyu; Chen-Wei Liao; Ren-Jye Lee; Maw-Rong Lee; Thomas W. Vickroy; Chi-Chung Chou
BACKGROUND Zeranol (Z) is a semi-synthetic mycotoxin that is used in some countries as a growth-promoting agent in livestock. In view of the known oestrogenic actions by Z and certain Z analogues, significant concerns exist with regard to the presence of Z residues in human foods and the potential for untoward effects, including carcinogenicity within the reproductive system. In order to confirm that foods are free from harmful Z residues, regulators need a quick and reliable analytical method that can be used for routine confirmation of Z-positive samples identified by enzyme-linked immunosorbent assay (ELISA) screening. In this study the authors have developed and validated a simple and rapid high-performance liquid chromatography method incorporating ultraviolet (UV) absorbance (wavelength 274 nm) and electrochemical (EC) dual-mode detection for simultaneous determination of Z-related mycotoxins produced from mouldy grain matrices, including rice, soybean and corn flakes. RESULTS Recoveries for all analytes were around 80% and the limits of detection ranged from 10 to 25 ng mL(-1) for UV and from 50 to 90 ng mL(-1) for EC detection with good accuracy and reproducibility. Differential profiles and occurrence rates of Z, β-zearalenol, β-zearalanol and α-zearalenol in naturally moulded grain matrices were observed, indicating different metabolite patterns and possibly grain-specific effects of mycotoxin exposure for humans and animals. The strength of this dual detection method lies in its selectivity characterised by a carbon screen-printed electrode such that aflatoxin interference is precluded. CONCLUSION The combined dual detection technique affords quick and reliable semi-confirmative and quantitative information on multiple types of Z analogues in mouldy grains without the necessity of using expensive mass spectrometry. The method is considered a superior supplement to ELISA, which only screens total Z immunoreactivity.
Electrophoresis | 2012
Tzu-Yi Ma; Thomas W. Vickroy; Jui-Hung Shien; Chi-Chung Chou
A NACE method with laser‐induced fluorescence detection was modified for sensitive detection of 4 tetracyclines (TCs) in biological samples and feeds. The changes in injection mode, injection times, id of capillary, excitation wavelength, and the use of surfactant and sample stacking technique all contributed to improved LODs of TCs to sub‐ng/mL level. With the optimized conditions, the instrumental LODs could reach 1.33 ng/mL for chlorotetracycline (CTC) and 13.3 ng/mL for TC, oxytetracycline (OTC), and doxycycline (DC), an improvement of 10–100‐fold over past studies. A simple SPE procedure was further developed for the extraction and concentration of TCs in plasma, urine, feed, and milk. Taken together, the instrumental LOD and feasible SPE concentration factors the overall LODs for CTC could reach 65 pg/mL in feed and milk and 260 pg/mL in plasma and urine. Detection limits for TC, OTC, and DC at sub‐ng/mL level were also achieved. The modified CE‐LIF method was found to be less complicated and more sensitive than the best current methods using UV or LIF detection, and has been applied successfully to assess oral absorption of DC in swine and chickens and to confirm suspected TC‐positive bovine serum samples.