Chi-ju Wei
Shantou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chi-ju Wei.
Endocrinology | 2009
Si-wu Peng; Lin-yun Zhu; Miao Chen; Mei Zhang; Di-zheng Li; Yu-cai Fu; Shen-ren Chen; Chi-ju Wei
Understanding the mechanisms of beta-cell dynamics in postnatal animals is central to cure diabetes. A major obstacle in evaluating the status of pancreatic cells is the lack of surface markers. Here we performed quantitative measurements of two internal markers to follow the developmental history of islets. One marker, cell-cycle activity, was established by measuring expression of Ki67 and the incorporation of 5-bromodeoxyuridine. The other marker, the aging process, was delineated by the determination of telomere length. Moreover, islet neogenesis, possibly from ductal precursors, was monitored by pancreatic duct labeling with an enhanced green fluorescence protein (EGFP) transgene. We found that islets from younger animals, on average, expressed higher Ki67 transcripts, displayed elevated 5-bromodeoxyuridine incorporation, and had longer telomeres. However, significant heterogeneity of these parameters was observed among islets from the same mouse. In contrast, the levels of proinsulin-1 transcripts in islets of different ages did not change significantly. Moreover, mitotic activities correlated significantly with telomere lengths of individual islets. Lastly, after 5.5 d pancreatic duct labeling, a few EGFP-positive islets could be identified in neonatal but not from adult pancreases. Compared with unlabeled control islets, EGFP-positive islets had higher mitotic activities and longer telomeres. The results suggest that islets are born at different time points during the embryonic and neonatal stages and imply that young islets might play an important role in the maintenance of islet mass in the adult pancreas.
Molecular Therapy | 2011
Mi-mi Tang; Qin-e Zhu; Wen-zhu Fan; Shui-li Zhang; Di-zheng Li; Li-zhong Liu; Miao Chen; Mei Zhang; Jing Zhou; Chi-ju Wei
Gene therapy provides a promising approach to curing diabetes. However, an effective route for islet-specific targeting has yet to be established. Toward this end, the pancreatic blood circulation system in Balb/c mice was determined by the injection of rhodamine-containing beads. The efficiency of islet targeting was then measured by the injection of adenoviral vectors carrying a green fluorescence gene via the celiac trunk (C.T.). The results showed that >95% of islets and about 60% of β cells within the pancreatic body and tail could be labeled 3 days after surgery. α-Cell labeling was not as efficient, whereas labeling of nonendocrine tissues was barely detectable. For proof of principle, adenoviral vectors carrying a Sirtuin transgene were injected similarly to test the islet protection effect in the streptozotocin (STZ)-induced type 1 diabetic model. The results demonstrated that overexpression of Sirtuin in STZ-treated mice reduced the level of β-cell death and extent of glucose intolerance. This study reports on efficient islet-specific targeting by using adenoviral injection. This procedure could be invaluable to the treatment of diabetes and the study of islet biology.
PLOS ONE | 2016
Liyuan Zheng; Xianliang Zhao; Pei Zhang; Chuandao Chen; Shangjie Liu; Runqing Huang; Mingqi Zhong; Chi-ju Wei; Yueling Zhang
Hemocyanin (HMC) has been shown to participate in multiple roles of immune defence. In this study, we investigated the antiproliferative effect and underpinning mechanism of HMC from Litopenaeus vannamei in vitro. Sulforhodamine B (SRB) assay indicated that HMC could dramatically inhibit the growth of HeLa cells, but not 293T cells under the same conditions. Moreover, typical morphological features of apoptosis in HeLa cells including the formation of apoptotic body-like vesicles, chromatin condensation and margination were observed by using 4, 6-diamidino-2- phenylindole dihydrochloride (DAPI) staining and fluorescence analysis. An apoptotic DNA ladder from 180 to 300 bp was also detected. Furthermore, 10 variation proteins associated with apoptosis pathway, viz. G3PDH isoforms 1/2 (G3PDH1/2), aldosereductase, ectodemal dysplasia receptor associated death receptor domain isoform CRA_a (EDARADD), heat shock 60kD protein 1 variant 1 (HSP60), heat shock 70kDa protein 5 precursor (HSP70), heat shock protein 90kDa beta member 1 precursor (HSP90), 14-3-3 protein ζ/δ, Ran and ubiquitin activating enzyme E1(UBE1), were identified from HMC-treated HeLa cells by the proteomic and quantitative real-time RT-PCR strategies. Importantly, the reactive oxygen species (ROS), mitochondrial membrane potential (Δψm) and caspase-9/3 activities were changed significantly in HMC-treated HeLa cells. Together, the data suggests that L. vannamei HMC mediates antiproliferative properties through the apoptosis mechanism involving the mitochondria triggered pathway.
Journal of Biomedical Materials Research Part A | 2009
Xiao-Di Yang; Hong-Ming Li; Miao Chen; Xiang-Hui Zou; Lin-yun Zhu; Chi-ju Wei; Guo-Qiang Chen
Islet transplantation represents an important alternative for the treatment of diabetes. However, the selection of suitable materials is critical for the success of such an implantation application. In this study, cellular migration, aggregation, and insulin production of a murine islet beta-cell line, NIT-1 cells on microbially produced polyesters poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB) or polylactic acid (PLA) films were investigated. Spherical islet-like structures were only detected on PHBHHx films after 48 h cultivation. To understand the mechanism underlying the formation of cell aggregates, NIT-1-GFP, a stable transfectant of the green fluorescent protein was used in a time-lapse imaging study. Cell aggregation began on PHBHHx at 2 h, and became obvious at 4 h. Furthermore, cells on PHBHHx displayed higher metabolic activities measured by MTT assay than that on tissue culture plate. More importantly, insulin gene expression as well as extracellular secretion was upregulated after growth on PHBHHx for 72 h. Thus, PHBHHx can be a strong candidate for islet transplantation.
Journal of Biomaterials Science-polymer Edition | 2009
Xiao-Di Yang; Xiang-Hui Zou; Zhong-Wei Dai; Rong-Cong Luo; Chi-ju Wei; Guo-Qiang Chen
Biopolyesters of polyhydroxyalkanoates (PHAs), including poly-3-hydroxybutyrate (PHB), co-polyester of 3-hydroxybutyrate and 4-hydroxybutyrate (P3HB4HB), and co-polyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) have been well investigated for their biocompatibility. For in vivo application, it is very important that the degradation products of PHAs, especially the oligomers, are not harmful to the cells and surrounding tissues. In this study, in vitro effects of oligo(3-hydroxybutyrate) (OHB), oligo(3-hydroxybutyrate-co-4-hydroxybutyrate) (O3HB4HB) and oligo(3-hydroxybutyrate-co-3-hydroxyhexanoate) (OHBHHx) on growth and differentiation of the murine beta cell line NIT-1 were investigated. Among the three oligo-hydroxyalkanoates (Oligo-HAs), cells treated with OHBHHx displayed higher viability, as measured by CCK-8 assay. Flow cytometric analysis of NIT-1 cells indicated that Oligo-HAs had an inhibitory effect on cell apoptosis. The cytosolic Ca2+ transient of NIT-1 cells increased when fed with 0.04 g/l Oligo-HAs. For gap junction intercellular communication of cells, the effect of OHBHHx was the best among all materials tested. More importantly, extracellular insulin secretion was up-regulated after growing in OHBHHx for 48 h. The results demonstrated that the degradation products of PHAs, especially OHBHHx from PHBHHx, were not harmful to the beta cells. Therefore, PHBHHx warrant further study for application as a pancreatic tissue engineering material.
General and Comparative Endocrinology | 2016
Na Wang; De-yu Guo; Xiong Tian; Hao-peng Lin; Yun-pan Li; Shao-jun Chen; Yucai Fu; Wencan Xu; Chi-ju Wei
OBJECTIVES We previously found niacin receptor GPR109A was expressed in murine islet beta-cells, and signaling through GPR109A inhibited glucose stimulated insulin secretion (GSIS). However, the expression of GPR109A in human islets and its functional relevance is still not known. METHODS The expression of GPR109A was examined by antibody staining and in situ hybridization on pancreatic paraffin sections. GPR109A was cloned and expressed in INS-1 islet beta-cells. Intracellular cAMP and GSIS were determined using enzyme-linked immunosorbent assay (ELISA). RESULTS The expression of GPR109A was confirmed in murine islet beta-cells and further detected in human counterparts by using commercially available polyclonal antibodies. In situ hybridization study detected the transcripts of GPR109A, but not that of closely related GPR109B. Furthermore, GPR109A was significantly reduced in islets from diabetic individuals and animal model of db/db mice as compared to their respective controls. Further, GPR109A levels in insulinoma were also reduced dramatically as compared to islets found in corresponding non-tumor normal tissues. Quantitative RT-PCR analysis demonstrated that GPR109A transcripts were severely down-regulated in rodent insulinoma cell lines as compared to that of freshly isolated islets from mice. Finally, human and murine GPR109A expression cassettes were transfected into INS-1 cells, which resulted in reduced accumulation of cAMP and insulin secretion after incubation with niacin. The effect could be completely abrogated by pretreatment with pertussis toxin. CONCLUSIONS These results demonstrate that GPR109A is functionally expressed in both human and murine islet beta-cells. However, the role of GPR109A in the prevention of diabetes or insulinoma needs further study.
PLOS ONE | 2015
Gen-cheng Gong; Wen-zhu Fan; Di-zheng Li; Xiong Tian; Shao-jun Chen; Yucai Fu; Wencan Xu; Chi-ju Wei
Ectopically expressed Cre recombinase in extrapancreatic tissues in RIP-Cre mice has been well documented. The objective of this study was to find a simple solution that allows for improved beta-cell specific targeting. To this end, the RIP-Cre and reporter CMV-loxP-DsRed-loxP-EGFP expression cassettes were configurated into a one-plasmid and two-plasmid systems, which labeled approximately 80% insulin-positive INS-1 cells after 48 h transfection. However, off-target labeling was robustly found in more than 15% insulin-negative Ad293 cells. When an IRES element was inserted in front of Cre to reduce the translation efficiency, the ratio of recombination between INS-1 and Ad293 cells increased 3-4-fold. Further, a series of Cre mutants were generated by site-directed mutagenesis. When one of the mutants, Cre(H289P) in both configurations, was used in the experiment, the percentage of recombination dropped to background levels in a number of insulin-negative cell lines, but decreased only slightly in INS-1 cells. Consistently, DNA substrate digestion assay showed that the enzymatic activity of Cre(H289P) was reduced by 30-fold as compared to that of wild-type. In this study, we reported the generation of constructs containing RIP and Cre mutants, which enabled enhanced beta-cell specific labeling in vitro. These tools could be invaluable for beta-cell targeting and to the study of islet development.
Journal of Gene Medicine | 2012
Shui-li Zhang; De-Jin Zheng; Wen-zhu Fan; Dai-Xu Wei; Si-Wu Peng; Mi-mi Tang; Guo-Qiang Chen; Chi-ju Wei
Our previous study showed an efficient targeting of islets of Langerhans by adenoviral injection via the celiac trunk. Unexpectedly, none of the endothelial cells was infected given the direct contact between adenoviruses and the capillary wall. The present study intended to provide an efficient approach for adenoviral targeting of the microcapillary endothelial cells in the pancreas.
Scientific Reports | 2017
Na Wang; Xiong Tian; Yu Chen; Hui-qi Tan; Pei-jian Xie; Shao-jun Chen; Yucai Fu; Yi-xin Chen; Wencan Xu; Chi-ju Wei
The aim of this study was to determine whether low dose doxycycline as an anti-inflammatory agent could improve glucose metabolism in diabetic animals. Therefore, doxycycline was supplemented in drinking water to 6-week-old male db/db mice for 10 weeks. Doxycycline reduced perirenal/epididymal fat, Lee’s index, and liver cholesterol. Blood HDL-cholesterol increased, but total cholesterol and aspartate transaminase decreased. Glucose and insulin tolerances were improved, accompanying with reduced fasting blood glucose, insulin, HOMA-IR and advanced glycation end products. Islet number, β-cell percentage and mass increased, while islet size decreased. Consistently, less apoptosis but more β-cell proliferation were found in islets of treated mice. Freshly isolated islets from treated mice showed higher insulin content and enhanced glucose stimulated insulin secretion (GSIS). In addition, purified islets of Balb/c mice showed increased GSIS after cultivation in vitro with doxycycline, but not with chloramphenicol and levofloxacin. Inflammation markers, including lipopolysaccharides (LPS) and C-reactive protein (CRP) in serum as well as CD68-positive cells in treated islets, decreased significantly. Finally, LPS stimulated the production of inflammatory factors but inhibited GSIS of MIN6 cells; however, the effects were completely reversed by doxycycline. The results support further study of possible long-term usage of sub-antimicrobial doxycycline in diabetic patients.
Journal of Visualized Experiments | 2017
Li-qun Xu; Mei-jia Lin; Yun-pan Li; Shuang Li; Shao-jun Chen; Chi-ju Wei
We have previously reported on the generation of plasma membrane vesicles (PMVs) through the mechanical extrusion of mammalian cells. The fusion of PMVs with mitochondrial deficient Rho0 cells restored mitotic activity under normal culture conditions. Atherosclerosis, type 2 diabetes, Alzheimers disease, and cancer are age-related diseases that have been reported to be associated with multiple mechanical and functional defects in the cytosol and organelles of a variety of cell types. Bone marrow mesenchymal stem cells (BMSCs) represent a unique cell population from the bone marrow that possess self-renewal capabilities while maintaining their multipotency. The supplementation of senescence cells with young cytoplasm from autologous BMSCs via the fusion of PMVs provides a promising approach to ameliorate or even reverse age-associated phenotypes. This protocol describes how to prepare PMVs from BMSCs via extrusion through a polycarbonate membrane with 3 µm pores, determine the existence of mitochondria and examine the maintenance of membrane potential within PMVs using a confocal microscope, concentrate PMVs by centrifugation, and carry out the in vivo injection of PMVs into the gastrocnemius muscle of mice.