Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chi-Shin Hwang is active.

Publication


Featured researches published by Chi-Shin Hwang.


PLOS ONE | 2013

A Novel Cell-Penetrating Peptide Derived from Human Eosinophil Cationic Protein

Shun-lung Fang; Tan-chi Fan; Hua-Wen Fu; Chien-Jung Chen; Chi-Shin Hwang; Ta-Jen Hung; Lih Yuan Lin; Margaret Dah-Tsyr Chang

Cell-penetrating peptides (CPPs) are short peptides which can carry various types of molecules into cells; however, although most CPPs rapidly penetrate cells in vitro, their in vivo tissue-targeting specificities are low. Herein, we describe cell-binding, internalization, and targeting characteristics of a newly identified 10-residue CPP, denoted ECP32–41, derived from the core heparin-binding motif of human eosinophil cationic protein (ECP). Besides traditional emphasis on positively charged residues, the presence of cysteine and tryptophan residues was demonstrated to be essential for internalization. ECP32–41 entered Beas-2B and wild-type CHO-K1 cells, but not CHO cells lacking of cell-surface glycosaminoglycans (GAGs), indicating that binding of ECP32–41 to cell-surface GAGs was required for internalization. When cells were cultured with GAGs or pre-treated with GAG-digesting enzymes, significant decreases in ECP32–41 internalization were observed, suggesting that cell-surface GAGs, especially heparan sulfate proteoglycans were necessary for ECP32–41 attachment and penetration. Furthermore, treatment with pharmacological agents identified two forms of energy-dependent endocytosis, lipid-raft endocytosis and macropinocytosis, as the major ECP32–41 internalization routes. ECP32–41 was demonstrated to transport various cargoes including fluorescent chemical, fluorescent protein, and peptidomimetic drug into cultured Beas-2B cells in vitro, and targeted broncho-epithelial and intestinal villi tissues in vivo. Hence this CPP has the potential to serve as a novel vehicle for intracellular delivery of biomolecules or medicines, especially for the treatment of pulmonary or gastrointestinal diseases.


Journal of Biological Chemistry | 2008

Characterization of Molecular Interactions between Eosinophil Cationic Protein and Heparin

Tan-chi Fan; Shun-lung Fang; Chi-Shin Hwang; Xin-An Lu; Shang-Cheng Hung; Shu-Chuan Lin; Margaret Dah-Tsyr Chang

Eosinophil cationic protein (ECP) is currently used as a biomarker for airway inflammation. It is a heparin-binding ribonuclease released by activated eosinophils. Its cytotoxicity toward cancer cell lines is blocked by heparin. The objective of this study was to locate the heparin binding site of ECP by site-directed mutagenesis and construction of a synthetic peptide derived from this region. Synthetic heparin with ≥5 monosaccharide units showed strong inhibition of ECP binding to the cell surface. Analysis of ECP mt1 (R34A/W35A/R36A/K38A) showed that these charged and aromatic residues were involved in ECP binding to heparin and the cell surface. A potential binding motif is located in the loop L3 region between helix α2 and strand β1, outside the RNA binding domain. The synthetic peptide derived from the loop L3 region displayed strong pentasaccharide binding affinity and blocked ECP binding to cells. In addition, ECP mt1 showed reduced cytotoxicity. Thus, the tight interaction between ECP and heparin acts as the primary step for ECP endocytosis. These results provide new insights into the structure and function of ECP for anti-asthma therapy.


Neurotoxicology | 2009

Protective effects of brain-derived neurotrophic factor against neurotoxicity of 3-nitropropionic acid in rat cortical neurons.

Chia-Lin Wu; Chi-Shin Hwang; Ding-I Yang

Brain-derived neurotrophic factor (BDNF) deficiency has been implicated in pathogenesis of Huntingtons disease (HD). 3-Nitropropionic acid (3-NP), an irreversible mitochondrial complex II inhibitor, has been commonly used as a pharmacological model recapitulating HD phenotypes in rodents and nonhuman primates. Herein we test whether BDNF may exert neuroprotective effects against mitochondrial dysfunction caused by 3-NP in primary culture of fetal rat cortical neurons. Preconditioning of neuronal cells with BDNF (100 ng/ml for 8h) attenuated 3-NP toxicity (2.5 mM for additional 24h) based on Hoechst and propidium iodide (PI) staining. BDNF effects can be inhibited by the nitric oxide synthase (NOS) inhibitor L-nitroarginine methylester (L-NAME, 100 microM), the cGMP-dependent protein kinase (PKG) inhibitor KT5823 (2 microM), the thioredoxin reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB, 5 microM), and a membrane-permeable Bcl-2 inhibitor (12.5 microM). 8-Br-cGMP is a cGMP analogue capable of activating PKG independent of NO. Exogenous application of 8-Br-cGMP (3-30 microM) and purified thioredoxin (3-5 microM) partially mimicked BDNF effects in conferring 3-NP resistance to cortical cells. These results, together with our previous report showing NO donor S-nitrosoglutathione (GSNO)-mediated neuroprotective effects against 3-NP toxicity, suggest that BDNF may protect neurons from mitochondrial dysfunction at least partly via activation of the signaling cascades involving NOS/NO, PKG, thioredoxin and Bcl-2.


Biochemical and Biophysical Research Communications | 2009

Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid

Chia-Lin Wu; Shang-Der Chen; Chi-Shin Hwang; Ding-I Yang

Sonic hedgehog (SHH), a morphogen critical for embryogenesis, has also been shown to be neuroprotective. We have recently reported that pretreatment of rat cortical neurons for 8 h with brain-derived neurotrophic factor (BDNF; 100 ng/ml) affords protection against neurotoxicity of 3-nitropropionic acid (3-NP; 2.5 mM for 24 h), a mitochondrial complex II inhibitor. However, whether SHH is involved in BDNF-mediated neuroprotection remains unknown. Herein we tested whether BDNF induces SHH expression and if so, whether BDNF induction of SHH contributes to the observed neuroprotective effects. We found BDNF (100 ng/ml) increased SHH expression at both mRNA and protein levels. BDNF protection against 3-NP was abolished by cyclopamine (CPM; 5 microM), the SHH pathway inhibitor. Preconditioning of cortical neurons with N-terminal fragment of SHH (SHH-N; 0.1-1 ng/ml) was sufficient to confer resistance. These results indicate that BDNF induces SHH expression, which contributes to neuroprotection against 3-NP toxicity in rat cortical neurons.


Free Radical Research | 2012

Anti-apoptotic and anti-oxidative mechanisms of minocycline against sphingomyelinase/ceramide neurotoxicity: implication in Alzheimer's disease and cerebral ischemia

Shang-Der Chen; Jiu-Haw Yin; Chi-Shin Hwang; Ching-Min Tang; Ding-I Yang

Abstract Sphingolipids represent a major class of lipids in which selected family members act as bioactive molecules that control diverse cellular processes, such as proliferation, differentiation, growth, senescence, migration and apoptosis. Emerging evidence reveals that sphingomyelinase/ceramide pathway plays a pivotal role in neurodegenerative diseases that involve mitochondrial dysfunction, oxidative stress and apoptosis. Minocycline, a semi-synthetic second-generation tetracycline derivative in clinical use for infection control, is also considered an effective protective agent in various neurodegenerative diseases in pre-clinical studies. Acting via multiple mechanisms, including anti-inflammatory, anti-oxidative and anti-apoptotic effects, minocycline is a desirable candidate for clinical trials in both acute brain injury as well as chronic neurodegenerative disorders. This review is focused on the anti-apoptotic and anti-oxidative mechanisms of minocycline against neurotoxicity induced by sphingomyelinase/ceramide in relation to neurodegeneration, particularly Alzheimers disease and cerebral ischemia.


Neurobiology of Disease | 2013

Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis.

Chi-Shin Hwang; Guan-Ting Liu; Margaret Dah-Tsyr Chang; I-Lin Liao; Hao-Teng Chang

Amyotrophic lateral sclerosis (ALS) is a complicate and progressive onset devastating neurodegenerative disease. Its pathogenic mechanisms remain unclear and there is no specific test for diagnosis. For years, researchers have been vigorously searching for biomarkers associated with ALS to assist clinical diagnosis and monitor disease progression. Some specific inflammatory processes in the central nervous system have been reported to participate in the pathogenesis of ALS. As high mobility group box 1 (HMGB1) is elevated in spinal cord tissues of patients with ALS, we hypothesized, therefore, that serum autoantibody against HMGB1 (HMGB1 autoAb) might represent an effective biomarker for ALS. Patients with ALS, Alzheimers disease, Parkinsons disease, and healthy age-matched control subjects were recruited for this study. ALS group consisted of 61 subjects, the other groups each consisted of forty subjects. We generated a polyclonal antibody against HMGB1 and developed an ELISA-based methodology for screening serum samples of these subjects. All samples were coded for masked comparison. For statistic analyses, two-tailed Students t-test, ANOVA, Bonferroni multiple comparison test, Spearman correlation, and receiver operating characteristic curve were applied. We discovered that the level of HMGB1 autoAb significantly increased in patients with ALS as compared with that of patients with Alzheimers disease, Parkinsons disease, and healthy control subjects. The differences between all groups were robust even at the early stages of ALS progression. More importantly, higher HMGB1 autoAb level was found in more severe disease status with significant correlation. Our study demonstrates that serum HMGB1 autoAb may serve as a biomarker for the diagnosis of ALS and can be used to monitor disease progression.


Annals of the New York Academy of Sciences | 2010

Neuroprotective mechanisms of brain-derived neurotrophic factor against 3-nitropropionic acid toxicity: therapeutic implications for Huntington's disease.

Chia-Lin Wu; Chi-Shin Hwang; Shang-Der Chen; Jiu-Haw Yin; Ding-I Yang

3‐Nitropropionic acid (3‐NP) is an irreversible inhibitor of mitochondrial succinate dehydrogenase that has been used to explore the molecular mechanisms of cell death associated with mitochondrial dysfunction and neurodegeneration for Huntingtons disease (HD). Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that may regulate neuronal survival and differentiation. Experimental evidence derived from both clinical as well as basic research suggests a close association between BDNF deficiency and HD pathogenesis. In this review, we focus on recent progress in the molecular mechanisms responsible for the BDNF‐mediated neuroprotective effects against mitochondrial dysfunction induced by 3‐NP. Delineation of BDNF‐mediated neuroprotective actions against 3‐NP toxicity may add in the development of therapeutic intervention for HD where mitochondrial dysfunction is known to play a crucial role in pathogenesis of this devastating disease.


Free Radical Research | 2014

NAD attenuates oxidative DNA damages induced by amyloid beta-peptide in primary rat cortical neurons

M.-F. Wu; Jiu-Haw Yin; Chi-Shin Hwang; Ching-Min Tang; Ding-I Yang

Abstract One major pathological hallmark of Alzheimers disease (AD) is accumulation of senile plaques in patients’ brains, mainly composed of amyloid beta-peptide (Aβ). Nicotinamide adenine dinucleotide (NAD) has emerged as a common mediator regulating energy metabolism, mitochondrial function, aging, and cell death, all of which are critically involved in neuronal demise observed in AD. In this work, we tested the hypothesis that NAD may attenuate Aβ-induced DNA damages, thereby conferring neuronal resistance to primary rat cortical cultures. We found that co-incubation of NAD dose-dependently attenuated neurotoxicity mediated by Aβ25–35 and Aβ1-42 in cultured rat cortical neurons, with the optimal protective dosage at 50 mM. NAD also abolished the formation of reactive oxygen species (ROS) induced by Aβ25-35. Furthermore, Aβs were capable of inducing oxidative DNA damages by increasing the extents of 8-hydroxy-2´-deoxyguanosine (8-OH-dG), numbers of apurinic/apyrimidinic (AP) sites, genomic DNA single-stranded breaks (SSBs), as well as DNA double-stranded breaks (DSBs)/fragmentation, which can all be attenuated upon co-incubation with NAD. Our results thus reveal a novel finding that NAD is protective against DNA damage induced by existing Aβ, leading ultimately to neuroprotection in primary cortical culture.


Molecular Neurobiology | 2016

Nuclear Factor-kappaB-Dependent Sestrin2 Induction Mediates the Antioxidant Effects of BDNF Against Mitochondrial Inhibition in Rat Cortical Neurons

Chia-Lin Wu; Shang-Der Chen; Jiu-Haw Yin; Chi-Shin Hwang; Ding-I Yang

Brain-derived neurotrophic factor (BDNF), in addition to its neurotrophic action, also possesses antioxidant activities. However, the underlying mechanisms remain to be fully defined. Sestrin2 is a stress-responsive gene implicated in the cellular defense against oxidative stress. Currently, the potential functions of sestrin2 in nervous system, in particular its correlation with neurotrophic factors, have not been well established. In this study, we hypothesized that BDNF may enhance sestrin2 expression to confer neuronal resistance against oxidative stress induced by 3-nitropropionic acid (3-NP), an irreversible mitochondrial complex II inhibitor, and characterized the molecular mechanisms underlying BDNF induction of sestrin2 in primary rat cortical cultures. We found that BDNF-mediated sestrin2 expression in cortical neurons required formation of nitric oxide (NO) with subsequent production of 3′,5′-cyclic guanosine monophosphate (cGMP) and activation of cGMP-dependent protein kinase (PKG). BDNF induced localization of nuclear factor-kappaB (NF-κB) subunits p65 and p50 into neuronal nuclei that required PKG activities. Interestingly, BDNF exposure led to formation of a protein complex containing at least PKG-1 and p65/p50, which bound to sestrin2 promoter with resultant upregulation of its protein products. Finally, BDNF preconditioning mitigated production of reactive oxygen species (ROS) as a result of 3-NP exposure; this antioxidative effect of BDNF was dependent upon PKG activity, NF-κB, and sestrin2. Taken together, our results indicated that BDNF enhances sestrin2 expression to confer neuronal resistance against oxidative stress induced by 3-NP through attenuation of ROS formation; furthermore, BDNF induction of sestrin2 requires activation of a pathway involving NO/PKG/NF-κB.


Free Radical Biology and Medicine | 2011

Neuroprotective mechanisms of minocycline against sphingomyelinase/ceramide toxicity: Roles of Bcl-2 and thioredoxin

Ching-Min Tang; Chi-Shin Hwang; Shang-Der Chen; Ding-I Yang

In this study, we determined whether minocycline may protect rat cortical cultures against neurotoxicity induced by sphingomyelinase/ceramide and explored the underlying mechanisms. We found that minocycline exerted strong neuroprotective effects against toxicity induced by bacterial sphingomyelinase and synthetic C2 ceramide. Minocycline enhanced the production of nitric oxide (NO) with resultant increases in cellular cGMP content. Consistently, minocycline-dependent neuroprotection was abolished by the nitric oxide synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) and the soluble guanylate cyclase (sGC) inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ). Western blotting revealed that minocycline restored the expression levels of cGMP-dependent protein kinase (PKG)-1, antioxidative thioredoxin-1, and antiapoptotic Bcl-2 that were down-regulated by bacterial sphingomyelinase. Accordingly, the PKG inhibitor KT5823, the thioredoxin reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB), and a Bcl-2 inhibitor significantly abolished the minocycline neuroprotection. The minocycline-dependent restoration of Bcl-2 was abolished by L-NAME, ODQ, and KT5823, but not by DNCB, suggesting the involvement of NO/sGC/PKG but not thioredoxin. Furthermore, minocycline-dependent recovery of thioredoxin-1 was PKG-independent. Taken together, our results indicate that minocycline protects rat cortical neurons against bacterial sphingomyelinase/ceramide toxicity via an NO/cGMP/PKG pathway with induction of Bcl-2 and PKG-independent stimulation of thioredoxin-1.

Collaboration


Dive into the Chi-Shin Hwang's collaboration.

Top Co-Authors

Avatar

Ding-I Yang

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chia-Lin Wu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Jiu-Haw Yin

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ching-Min Tang

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shun-lung Fang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Tan-chi Fan

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chien-Hui Chen

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Chien-Jung Chen

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge