Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chi-un Choe is active.

Publication


Featured researches published by Chi-un Choe.


Stroke | 2009

Temporal and Spatial Dynamics of Cerebral Immune Cell Accumulation in Stroke

Mathias Gelderblom; Frank Leypoldt; Karin Steinbach; Doerthe Behrens; Chi-un Choe; Dominic A. Siler; Thiruma V. Arumugam; Ellen Orthey; Christian Gerloff; Eva Tolosa; Tim Magnus

BACKGROUND AND PURPOSE Ischemic stroke leads to significant morbidity and mortality in the Western world. Early reperfusion strategies remain the treatment of choice but can initiate and augment an inflammatory response causing secondary brain damage. The understanding of postischemic inflammation is very limited. The objectives of this study were to define the temporal and spatial infiltration of immune cell populations and their activation patterns in a murine cerebral ischemia-reperfusion injury model. METHODS Transient middle cerebral artery occlusion was induced for 1 hour followed by 12-hour to 7-day reperfusion in C57/BL6 mice. Immunohistochemistry and flow cytometry were used to quantify the infiltrating immune cell subsets. RESULTS Accumulation of microglia and infiltration of the ischemic hemisphere by macrophages, lymphocytes, and dendritic cells (DCs) preceded the neutrophilic influx. DCs were found to increase 20-fold and constituted a substantial proportion of infiltrating cells. DCs exhibited a significant upregulation of major histocompatibility complex II and major histocompatibility complex II high-expressing DCs were found 100 times more abundant than in sham conditions. Upregulation of the costimulatory molecule CD80 was observed in DCs and microglial cells but did not further increase in major histocompatibility complex II high-expressing DCs. No lymphocyte activation was observed. Additionally, regulatory immune cells (natural killer T-cells, CD4(-)/CD8(-)T lymphocytes) cumulated in the ischemic hemisphere. CONCLUSIONS This study provides a detailed analysis of the temporal dynamics of immune cell accumulation in a rodent stroke model. The peculiar activation pattern and massive increase of antigen-presenting cells in temporal conjunction with regulatory cells might provide additional insight into poststroke immune regulation.


Circulation | 2013

Homoarginine Levels Are Regulated by l-Arginine:Glycine Amidinotransferase and Affect Stroke Outcome Results From Human and Murine Studies

Chi-un Choe; Dorothee Atzler; Philipp S. Wild; Angela M. Carter; Rainer H. Böger; Francisco Ojeda; Olga Simova; Malte Stockebrand; Karl J. Lackner; Christine Nabuurs; Bart Marescau; Thomas Streichert; Christian Müller; Nicole Lüneburg; Peter Paul De Deyn; Ralf A. Benndorf; Stephan Baldus; Christian Gerloff; Stefan Blankenberg; Arend Heerschap; Peter J. Grant; Tim Magnus; Tanja Zeller; Dirk Isbrandt; Edzard Schwedhelm

Background— Endogenous arginine homologues, including homoarginine, have been identified as novel biomarkers for cardiovascular disease and outcomes. Our studies of human cohorts and a confirmatory murine model associated the arginine homologue homoarginine and its metabolism with stroke pathology and outcome. Methods and Results— Increasing homoarginine levels were independently associated with a reduction in all-cause mortality in patients with ischemic stroke (7.4 years of follow-up; hazard ratio for 1-SD homoarginine, 0.79 [95% confidence interval, 0.64–0.96]; P=0.019; n=389). Homoarginine was also independently associated with the National Institutes of Health Stroke Scale+age score and 30-day mortality after ischemic stroke (P<0.05; n=137). A genome-wide association study revealed that plasma homoarginine was strongly associated with single nucleotide polymorphisms in the L-arginine:glycine amidinotransferase (AGAT) gene (P<2.1×10−8; n=2806), and increased AGAT expression in a cell model was associated with increased homoarginine. Next, we used 2 genetic murine models to investigate the link between plasma homoarginine and outcome after experimental ischemic stroke: (1) an AGAT deletion (AGAT−/−) and (2) a guanidinoacetate N-methyltransferase deletion (GAMT−/−) causing AGAT upregulation. As suggested by the genome-wide association study, homoarginine was absent in AGAT−/− mice and increased in GAMT−/− mice. Cerebral damage and neurological deficits in experimental stroke were increased in AGAT−/− mice and attenuated by homoarginine supplementation, whereas infarct size in GAMT−/− mice was decreased compared with controls. Conclusions— Low homoarginine appears to be related to poor outcome after ischemic stroke. Further validation in future trials may lead to therapeutic adjustments of homoarginine metabolism that alleviate stroke and other vascular disorders.


Human Molecular Genetics | 2013

L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome

Chi-un Choe; Christine Nabuurs; Malte Stockebrand; Axel Neu; Patricia Nunes; Fabio Morellini; Kathrin Sauter; Stefan Schillemeit; Irm Hermans-Borgmeyer; Bart Marescau; Arend Heerschap; Dirk Isbrandt

Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.


PLOS ONE | 2011

CD38 Exacerbates Focal Cytokine Production, Postischemic Inflammation and Brain Injury after Focal Cerebral Ischemia

Chi-un Choe; Kerstin Lardong; Mathias Gelderblom; Peter Ludewig; Frank Leypoldt; Friedrich Koch-Nolte; Christian Gerloff; Tim Magnus

Background Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion. Methodology/Principal Findings We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model. Conclusion/Significance CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.


Current Opinion in Clinical Nutrition and Metabolic Care | 2015

L-homoarginine and cardiovascular disease.

Dorothee Atzler; Edzard Schwedhelm; Chi-un Choe

Purpose of reviewAn increasing number of reports indicate that low levels of the endogenous amino acid L-homoarginine are linked to cardiovascular disease. In this article, we review the current findings regarding L-homoarginine metabolism and (patho-)physiology with a focus on its clinical impact. Recent findingsRecent clinical and epidemiological studies revealed a strong association of low circulating L-homoarginine with cardiovascular outcomes and mortality. Human and murine studies identified L-arginine:glycine amidinotransferase (AGAT) as the responsible enzyme for endogenous L-homoarginine formation, suggesting a further important function of AGAT apart from its involvement in creatine and energy metabolism. Further studies related L-homoarginine to smoking and hypertension, and metabolic phenotypes. SummaryAGAT deficiency results in diminished intracellular energy stores (i.e., ATP and phosphocreatine), as well as a lack of L-homoarginine, and has been linked to an improved metabolic risk profile, but also to impaired cardiac and cerebrovascular function. L-homoarginines structural similarity to L-arginine suggested physiological interference with L-arginine pathways (e.g., nitric oxide). Animal experiments and clinical trials are needed to improve knowledge on the physiology of L-homoarginine and differentiate its role as marker and mediator in cardiovascular disease.


Antioxidants & Redox Signaling | 2011

Nitroxyl in the central nervous system.

Chi-un Choe; Jan Lewerenz; Christian Gerloff; Tim Magnus; Sonia Donzelli

Nitroxyl (HNO) is the one-electron-reduced and protonated congener of nitric oxide (NO). Compared to NO, it is far more reactive with thiol groups either in proteins or in small antioxidant molecules either converting those into sulfinamides or inducing disulfide bond formation. HNO might mediate cytoprotective changes of protein function through thiol modifications. However, HNO is a strong oxidant that in vitro reacts with glutathione to form glutathione disulfide and glutathione sulfinamide. The resulting oxidative stress might aggravate tissue damage in inflammatory diseases. In this review, we will summarize the current knowledge of how exogenous HNO affects the central nervous system, especially nerve cells and glia in health and disease. Unlike most other organs, the brain is separated from the circulation by the blood-brain barrier, which limits access of many pharmacological compounds. Given that, we will review what is known about the ability of currently used HNO donors to cross the blood-brain barrier. Moreover, considering that the physiology and composition of the brain has unique properties, for example, expression of brain-specific enzymes like neuronal NO synthase, its high iron content, and increased energy metabolism, we will discuss possible sources of endogenous HNO in the brain.


Psychiatry Research-neuroimaging | 2013

A clinical and neurobiological case of IgM NMDA receptor antibody associated encephalitis mimicking bipolar disorder

Chi-un Choe; Evangelos Karamatskos; Benjamin Schattling; Frank Leypoldt; Gianpiero Liuzzi; Christian Gerloff; Manuel A. Friese; Christoph Mulert

Autoimmune encephalitis associated with IgG antibodies to the N-methyl-d-aspartic acid receptor subunit NR1 (NMDAR) presents with neurological symptoms, such as seizures, and especially psychiatric symptoms, such as hallucinations, psychosis, agitation and anxiety. To date, however, the pathological relevance of IgM NMDAR antibodies remains elusive. Here, we describe clinical, neuroradiological and neurobiological findings of a 28-year-old male presenting with IgM NMDAR antibodies coincident with autoimmune encephalitis characterized by symptoms of bipolar disorder. After repeated steroid treatment, cognitive and psychiatric abnormalities improved and no NMDAR antibody was detectable. Using primary neuronal cultures, we demonstrate that patients serum containing IgM NMDAR antibodies reduced the detection of NMDAR on neuronal cells and decreased cell survival. Although NMDAR encephalitis with IgG antibodies is increasingly recognized and diagnosed, atypical presentations with NMDAR antibodies with immunoglobulin subclasses other than IgG pose a diagnostic and therapeutic challenge. Further clinical and neurobiological studies are needed to study the pathophysiological relevance of IgM NMDAR antibodies.


PLOS ONE | 2009

Dimethylarginine Dimethylaminohydrolase-1 Transgenic Mice Are Not Protected from Ischemic Stroke

Frank Leypoldt; Chi-un Choe; Mathias Gelderblom; Eike-Christin von Leitner; Dorothee Atzler; Edzard Schwedhelm; Christian Gerloff; Karsten Sydow; Rainer H. Böger; Tim Magnus

Background Methylated arginines are endogenous analogues of L-arginine, the substrate for nitric oxide (NO) synthase. Asymmetric dimethylarginine (ADMA) interferes with NO formation, causing endothelial dysfunction. ADMA is a predictor of cardiovascular events and mortality in humans. It is eliminated primarily by enzymatic activity of dimethylarginine dimethylaminohydrolase (DDAH). Methodology/Principal Findings We investigated whether human DDAH-1 (hDDAH-1) transgenicity protects from ischemic tissue damage in temporary middle cerebral artery occlusion (tMCAO) in mice. Infarct sizes did not significantly differ between hDDAH-1 transgenic (TG) mice and wild-type littermates (WT). As expected, ADMA plasma concentrations were significantly decreased, cerebral hDDAH expression and protein significantly increased in transgenic animals. Interestingly, neither brain tissue DDAH activity nor ADMA concentrations were different between TG and WT mice. In contrast, muscular DDAH activity was generally lower than in brain but significantly increased in TG mice. Conclusion/Significance Our study demonstrates that hDDAH-1 transgenic mice are not protected from ischemic cerebral tissue damage in tMCAO. This lack of protection is due to high basal cerebral DDAH activity, which is not further increasable by transgenic overexpression of DDAH.


The FASEB Journal | 2013

Differential regulation of AMPK activation in leptin- and creatine-deficient mice.

Malte Stockebrand; Kathrin Sauter; Axel Neu; Dirk Isbrandt; Chi-un Choe

AMP‐activated protein kinase (AMPK) is a key sensor and regulator of energy homeostasis. Previously, we demonstrated that intracellular energy depletion by L‐arginine:glycine amidinotransferase (AGAT) deficiency resulted in AMPK activation and protected from metabolic syndrome. In the present study, we show tissue‐specific leptin dependence of AMPK activation by energy depletion. We investigated leptin‐dependent AMPK regulation in AGAT‐ and leptin‐deficient (d/d ob/ob) mice. Like ob/ob mice, but unlike d/d mice, d/d ob/ob mice were obese and glucose intolerant. Therefore, leptin is a prerequisite for resistance to metabolic syndrome in AGAT‐deficient mice. Quantitative Western blots revealed a 4‐fold increase in AMPK activation in skeletal muscle of d/d ob/ob mice (P<0.001). However, AMPK activation was absent in white adipose tissue (WAT) and liver. Compared with blood glucose levels in ob/ob mice, fasting levels were still reduced and therefore did not show leptin dependence (wild‐type, 79.4±3.9 mg/dl; d/d, 68.4±3.2 mg/dl; P<0.05). In ob/ob mice and wild‐type mice, 5‐aminoimidazole‐4‐carboxamide‐1‐β‐d‐ribofuranoside (AICAR), in combination with leptin, augmented glucose tolerance compared with AICAR alone, whereas no improvement was found under conditions of high‐fatdiet feeding. These findings reveal a previously unknown synergistic AMPK activation by leptin and intracellular energy depletion, suggesting that AMPK activation can be therapeutically effective in metabolic syndrome only if leptin sensitivity is preserved.—Stockebrand, M., Sauter, K., Neu, A., Isbrandt, D., Choe, C., Differential regulation of AMPK activation in leptin‐ and creatine‐deficient mice. FASEBJ. 27, 4147‐4156 (2013). www.fasebj.org


PLOS ONE | 2017

Adverse events in deep brain stimulation: A retrospective long-term analysis of neurological, psychiatric and other occurrences

Carsten Buhmann; Torge Huckhagel; Katja Engel; Alessandro Gulberti; Ute Hidding; Monika Poetter-Nerger; Ines Katharina Goerendt; Peter Ludewig; Hanna Braass; Chi-un Choe; Kara Krajewski; Christian Oehlwein; Katrin Mittmann; Andreas Engel; Christian Gerloff; Manfred Westphal; Johannes A. Köppen; Christian K. E. Moll; Wolfgang Hamel

Background and objective The extent to which deep brain stimulation (DBS) can improve quality of life may be perceived as a permanent trade-off between neurological improvements and complications of therapy, comorbidities, and disease progression. Patients and methods We retrospectively investigated 123 consecutive and non-preselected patients. Indications for DBS surgery were Parkinsons disease (82), dystonia (18), tremor of different etiology (21), Huntingtons disease (1) and Gilles de la Tourette syndrome (1). AEs were defined as any untoward clinical occurrence, sign or patient complaint or unintended disease if related or unrelated to the surgical procedures, implanted devices or ongoing DBS therapy. Results Over a mean/median follow-up period of 4.7 years (578 patient-years) 433 AEs were recorded in 106 of 123 patients (86.2%). There was no mortality or persistent morbidity from the surgical procedure. All serious adverse events (SAEs) that occurred within 4 weeks of surgery were reversible. Neurological AEs (193 in 85 patients) and psychiatric AEs (78 in 48 patients) were documented most frequently. AEs in 4 patients (suicide under GPI stimulation, weight gain >20 kg, impairment of gait and speech, cognitive decline >2 years following surgery) were severe or worse, at least possibly related to DBS and non reversible. In PD 23.1% of the STN-stimulated patients experienced non-reversible (or unknown reversibility) AEs that were at least possibly related to DBS in the form of impaired speech or gait, depression, weight gain, cognitive disturbances or urinary incontinence (severity was mild or moderate in 15 of 18 patients). Age and Hoehn&Yahr stage of STN-simulated PD patients, but not preoperative motor impairment or response to levodopa, showed a weak correlation (r = 0.24 and 0.22, respectively) with the number of AEs. Conclusions DBS-related AEs that were severe or worse and non-reversible were only observed in PD (4 of 82 patients; 4.9%), but not in other diseases. PD patients exhibited a significant risk for non-severe AEs most of which also represented preexisting and progressive axial and non-motor symptoms of PD. Mild gait and/or speech disturbances were rather frequent complaints under VIM stimulation. GPI stimulation for dystonia could be applied with negligible DBS-related side effects.

Collaboration


Dive into the Chi-un Choe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge