Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chia Chen Liu is active.

Publication


Featured researches published by Chia Chen Liu.


Proceedings of the National Academy of Sciences of the United States of America | 2010

LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy

Chia Chen Liu; Julie L. Prior; David Piwnica-Worms; Guojun Bu

The Wnt/β-catenin signaling pathway is activated in breast cancer, a leading cause of cancer mortality in women. Because mutations in the key intracellular components of this pathway are rare, identifying the molecular mechanisms of aberrant Wnt activation in breast cancer is critical for development of pathway-targeted therapy. Here, we show that expression of the Wnt signaling coreceptor LRP6 is up-regulated in a subpopulation of human breast cancers. LRP6 silencing in breast cancer cells reduces Wnt signaling, cell proliferation, and in vivo tumor growth. In vivo administration of an LRP6 antagonist, Mesd, markedly suppressed growth of MMTV-Wnt1 tumors without causing undesirable side effects. These results demonstrate that Wnt activation at the cell surface contributes to breast cancer tumorigenesis. Together, our studies highlight LRP6 as a potential therapeutic target in breast cancer, and introduce Mesd as a promising antitumor agent for treating breast cancer subtypes with Wnt activation at the cell surface.


The Journal of Neuroscience | 2011

Heparan Sulphate Proteoglycan and the Low-Density Lipoprotein Receptor-Related Protein 1 Constitute Major Pathways for Neuronal Amyloid-β Uptake

Takahisa Kanekiyo; Juan Zhang; Qiang Liu; Chia Chen Liu; Lijuan Zhang; Guojun Bu

Alzheimers disease (AD) is a progressive and irreversible neurodegenerative disorder in which the aggregation and deposition of amyloid-β (Aβ) peptides in the brain are central to its pathogenesis. In healthy brains, Aβ is effectively metabolized with little accumulation. Cellular uptake and subsequent degradation of Aβ is one of the major pathways for its clearance in the brain. Increasing evidence has demonstrated significant roles for the low-density lipoprotein receptor-related protein 1 (LRP1) in the metabolism of Aβ in neurons, glia cells, and along the brain vasculatures. Heparan sulfate proteoglycan (HSPG) has also been implicated in several pathogenic features of AD, including its colocalization with amyloid plaques. Here, we demonstrate that HSPG and LRP1 cooperatively mediate cellular Aβ uptake. Fluorescence-activated cell sorter and confocal microscopy revealed that knockdown of LRP1 suppresses Aβ uptake, whereas overexpression of LRP1 enhances this process in neuronal cells. Heparin, which antagonizes HSPG, significantly inhibited cellular Aβ uptake. Importantly, treatment with heparin or heparinase blocked LRP1-mediated cellular uptake of Aβ. We further showed that HSPG is more important for the binding of Aβ to the cell surface than LRP1. The critical roles of HSPG in cellular Aβ binding and uptake were confirmed in Chinese hamster ovary cells genetically deficient in HSPG. We also showed that heparin and a neutralizing antibody to LRP1 suppressed Aβ uptake in primary neurons. Our findings demonstrate that LRP1 and HSPG function in a cooperative manner to mediate cellular Aβ uptake and define a major pathway through which Aβ gains entry to neuronal cells.


The Journal of Neuroscience | 2012

LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

Takahisa Kanekiyo; Chia Chen Liu; Mitsuru Shinohara; Jie Li; Guojun Bu

Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimers disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood–brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.


The Journal of Neuroscience | 2013

Neuronal Clearance of Amyloid-β by Endocytic Receptor LRP1

Takahisa Kanekiyo; John R. Cirrito; Chia Chen Liu; Mitsuru Shinohara; Jie Li; Dorothy R. Schuler; Motoko Shinohara; David M. Holtzman; Guojun Bu

Alzheimers disease (AD) is the most prevalent form of dementia in the elderly population. Accumulation, aggregation, and deposition of amyloid-β (Aβ) peptides generated through proteolytic cleavage of amyloid precursor protein (APP) are likely initiating events in the pathogenesis of AD. While Aβ production is accelerated in familial AD, increasing evidence indicates that impaired clearance of Aβ is responsible for late-onset AD. Because Aβ is mainly generated in neurons, these cells are predicted to have the highest risk of encountering Aβ among all cell types in the brain. However, it is still unclear whether they are also involved in Aβ clearance. Here we show that receptor-mediated endocytosis in neurons by the low-density lipoprotein receptor-related protein 1 (LRP1) plays a critical role in brain Aβ clearance. LRP1 is known to be an endocytic receptor for multiple ligands including Aβ. Conditional knock-out of Lrp1 in mouse forebrain neurons leads to increased brain Aβ levels and exacerbated amyloid plaque deposition selectively in the cortex of amyloid model APP/PS1 mice without affecting Aβ production. In vivo microdialysis studies demonstrated that Aβ clearance in brain interstitial fluid is impaired in neuronal Lrp1 knock-out mice. Because the neuronal LRP1-deletion did not affect the mRNA levels of major Aβ degrading enzymes, neprilysin and insulin-degrading enzyme, the disturbed Aβ clearance is likely due to the suppression of LRP1-mediated neuronal Aβ uptake and degradation. Together, our results demonstrate that LRP1 plays an important role in receptor-mediated clearance of Aβ and indicate that neurons not only produce but also clear Aβ.


International Journal of Cancer | 2008

Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: Implication for breast cancer osteolytic bone metastases

Guojun Bu; Wenyan Lu; Chia Chen Liu; Katri S. Selander; Toshiyuki Yoneda; Chris M. Hall; Evan T. Keller; Yonghe Li

Most breast cancer metastases in bone form osteolytic lesions, but the mechanisms of tumor‐induced bone resorption and destruction are not fully understood. Although it is well recognized that Wnt/β‐catenin signaling is important for breast cancer tumorigenesis, the role of this pathway in breast cancer bone metastasis is unclear. Dickkopf1 (Dkk1) is a secreted Wnt/β‐catenin antagonist. In the present study, we demonstrated that activation of Wnt/β‐catenin signaling enhanced Dkk1 expression in breast cancer cells and that Dkk1 overexpression is a frequent event in breast cancer. We also found that human breast cancer cell lines that preferentially form osteolytic bone metastases exhibited increased levels of Wnt/β‐catenin signaling and Dkk1 expression. Moreover, we showed that breast cancer cell‐produced Dkk1 blocked Wnt3A‐induced osteoblastic differentiation and osteoprotegerin (OPG) expression of osteoblast precursor C2C12 cells and that these effects could be neutralized by a specific anti‐Dkk1 antibody. In addition, we found that breast cancer cell conditioned media were able to block Wnt3A‐induced NF‐kappaB ligand reduction in C2C12 cells. Finally, we demonstrated that conditioned media from breast cancer cells in which Dkk1 expression had been silenced via RNAi were unable to block Wnt3A‐induced C2C12 osteoblastic differentiation and OPG expression. Taken together, these results suggest that breast cancer‐produced Dkk1 may be an important mechanistic link between primary breast tumors and secondary osteolytic bone metastases.


PLOS ONE | 2010

Dkk1 Stabilizes Wnt Co-Receptor LRP6: Implication for Wnt Ligand-Induced LRP6 Down-Regulation

Yonghe Li; Wenyan Lu; Taj D. King; Chia Chen Liu; Gautam N. Bijur; Guojun Bu

Background The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen. Methodology/Principal Findings In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis. Conclusions/Significance Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling.


The Journal of Neuroscience | 2016

ABCA7 Deficiency Accelerates Amyloid-β Generation and Alzheimer's Neuronal Pathology

Nobutaka Sakae; Chia Chen Liu; Mitsuru Shinohara; Jessica L. Frisch-Daiello; Li Ma; Yu Yamazaki; Masaya Tachibana; Linda Younkin; Aishe Kurti; Minerva M. Carrasquillo; Fanggeng Zou; Daniel Sevlever; Gina Bisceglio; Ming Gan; Romain Fol; Patrick Knight; Miao Wang; Xianlin Han; John D. Fryer; Michael L. Fitzgerald; Yasumasa Ohyagi; Steven G. Younkin; Guojun Bu; Takahisa Kanekiyo

In Alzheimers disease (AD), the accumulation and deposition of amyloid-β (Aβ) peptides in the brain is a central event. Aβ is cleaved from amyloid precursor protein (APP) by β-secretase and γ-secretase mainly in neurons. Although mutations in APP, PS1, or PS2 cause early-onset familial AD, ABCA7 encoding ATP-binding cassette transporter A7 is one of the susceptibility genes for late-onset AD (LOAD), in which its loss-of-function variants increase the disease risk. ABCA7 is homologous to a major lipid transporter ABCA1 and is highly expressed in neurons and microglia in the brain. Here, we show that ABCA7 deficiency altered brain lipid profile and impaired memory in ABCA7 knock-out (Abca7−/−) mice. When bred to amyloid model APP/PS1 mice, plaque burden was exacerbated by ABCA7 deficit. In vivo microdialysis studies indicated that the clearance rate of Aβ was unaltered. Interestingly, ABCA7 deletion facilitated the processing of APP to Aβ by increasing the levels of β-site APP cleaving enzyme 1 (BACE1) and sterol regulatory element-binding protein 2 (SREBP2) in primary neurons and mouse brains. Knock-down of ABCA7 expression in neurons caused endoplasmic reticulum stress highlighted by increased level of protein kinase R-like endoplasmic reticulum kinase (PERK) and increased phosphorylation of eukaryotic initiation factor 2α (eIF2α). In the brains of APP/PS1;Abca7−/− mice, the level of phosphorylated extracellular regulated kinase (ERK) was also significantly elevated. Together, our results reveal novel pathways underlying the association of ABCA7 dysfunction and LOAD pathogenesis. SIGNIFICANCE STATEMENT Gene variants in ABCA7 encoding ATP-binding cassette transporter A7 are associated with the increased risk for late-onset Alzheimers disease (AD). Importantly, we found the altered brain lipid profile and impaired memory in ABCA7 knock-out mice. The accumulation of amyloid-β (Aβ) peptides cleaved from amyloid precursor protein (APP) in the brain is a key event in AD pathogenesis and we also found that ABCA7 deficit exacerbated brain Aβ deposition in amyloid AD model APP/PS1 mice. Mechanistically, we found that ABCA7 deletion facilitated the processing of APP and Aβ production by increasing the levels of β-secretase 1 (BACE1) in primary neurons and mouse brains without affecting the Aβ clearance rate in APP/PS1 mice. Our study demonstrates a novel mechanism underlying how dysfunctions of ABCA7 contribute to the risk for AD.


The Journal of Neuroscience | 2015

Neuronal LRP1 Regulates Glucose Metabolism and Insulin Signaling in the Brain

Chia Chen Liu; Jin Hu; Chih Wei Tsai; Mei Yue; Heather L. Melrose; Takahisa Kanekiyo; Guojun Bu

Alzheimers disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy.


Journal of Experimental Medicine | 2017

Soluble TREM2 induces inflammatory responses and enhances microglial survival

Li Zhong; Xiao Fen Chen; Tingting Wang; Zhe Wang; Chunyan Liao; Zongqi Wang; Ruizhi Huang; Daxin Wang; Xinxiu Li; Linbei Wu; Lin Jia; Honghua Zheng; Meghan M. Painter; Yuka Atagi; Chia Chen Liu; Yun Wu Zhang; John D. Fryer; Huaxi Xu; Guojun Bu

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed in microglia in the brain. A soluble form of TREM2 (sTREM2) derived from proteolytic cleavage of the cell surface receptor is increased in the preclinical stages of AD and positively correlates with the amounts of total and phosphorylated tau in the cerebrospinal fluid. However, the physiological and pathological functions of sTREM2 remain unknown. Here, we show that sTREM2 promotes microglial survival in a PI3K/Akt-dependent manner and stimulates the production of inflammatory cytokines depending on NF-&kgr;B. Variants of sTREM2 carrying AD risk-associated mutations were less potent in both suppressing apoptosis and triggering inflammatory responses. Importantly, sTREM2 delivered to the hippocampi of both wild-type and Trem2-knockout mice elevated the expression of inflammatory cytokines and induced morphological changes of microglia. Collectively, these data indicate that sTREM2 triggers microglial activation inducing inflammatory responses and promoting survival. This study has implications for the pathogenesis of AD and provides insights into targeting sTREM2 pathway for AD therapy.


Biochemistry | 2010

Mesd is a universal inhibitor of wnt coreceptors lrp5 and lrp6 and blocks wnt/β-catenin signaling in cancer cells

Wenyan Lu; Chia Chen Liu; Jaideep V. Thottassery; Guojun Bu; Yonghe Li

Mesd is a specialized chaperone for low-density lipoprotein receptor-related protein 5 (LRP5) and LRP6. In our previous studies, we found that Mesd binds to mature LRP6 on the cell surface and blocks the binding of Wnt antagonist Dickkopf-1 (Dkk1) to LRP6. Herein, we demonstrate that Mesd also binds to LRP5 with a high affinity and is a universal inhibitor of LRP5 and LRP6 ligands. Mesd not only blocks binding of Wnt antagonists Dkk1 and Sclerostin to LRP5 and LRP6 but also inhibits Wnt3A and Rspondin1-induced Wnt/beta-catenin signaling in LRP5- and LRP6-expressing cells. We also found that Mesd, Dkk1, and Sclerostin compete with one another for binding to LRP5 and LRP6 at the cell surface. More importantly, we demonstrated that Mesd is able to suppress LRP6 phosphorylation and Wnt/beta-catenin signaling in prostate cancer PC-3 cells and inhibits PC-3 cell proliferation. Our results indicate that recombinant Mesd protein is a useful tool for studying Wnt/beta-catenin signaling on the cell surface and has a potential therapeutic role in Wnt-dependent cancers.

Collaboration


Dive into the Chia Chen Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Holtzman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge