Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chia-Hung Hou is active.

Publication


Featured researches published by Chia-Hung Hou.


Journal of Hazardous Materials | 2014

Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.

Shu-Yun Huang; Chen-Shiuan Fan; Chia-Hung Hou

This study was performed to determine the feasibility of electrosorptive removal of copper ions from aqueous solutions using a capacitive deionization process. The electrosorptive potential of copper ions was determined using cyclic voltammetry measurements, and copper electrodeposition could be suppressed at a voltage less than 0.8 V. Importantly, the experimental results demonstrated a significant enhancement of electrosorption capability of copper ions using the activated carbon electrodes under electro-assistance, associated with electrical double-layer charging. At 0.8 V, the equilibrium electrosorption capacity was enhanced to 24.57 mg/g based on the Langmuir model, and the electrosorption constant rate was increased to 0.038 min(-1) simulated by a first-order kinetics model. Moreover, the activated carbon electrode showed great regeneration performance for the removal of low level copper ions. Additional experiments regarding electrosorption selectivity were performed in the presence of sodium chloride, natural organic matter, or dissolved silica. Copper ions that were preferentially electroadsorbed on the electrode surface can be effectively removed in a competitive environment. Therefore, the electrosorption process using activated carbon electrodes can be recommended to treat copper solutions at low concentrations for wastewater treatment and water purification.


Journal of Chemical Physics | 2008

Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores.

Chia-Hung Hou; Patricia Taboada-Serrano; Sotira Yiacoumi; Costas Tsouris

Grand canonical Monte Carlo (GCMC) simulations are employed to study the selective electrosorption of ions from a mixture of symmetric and asymmetric electrolytes confined in pores and results are compared to experimental observations obtained via cyclic voltammetry and batch electrosorption equilibrium experiments. GCMC simulations have the advantage over other Monte Carlo methods to unambiguously quantify the total number of ions in the pore solution. The exclusion parameter and selectivity factor are used to evaluate the selective capacity of pores toward different ionic species under various conditions. The number of coions inside the pore solution is determined by the proportion of different counterions present in the double-layer region. Because of the competitive effects resulting from asymmetries in charge and size associated with different ions, the electrosorption selectivity of small monovalent over large divalent counterions first decreases with increasing surface charge, passes through a minimum, and then increases with further increase in surface charge. At low and moderate surface charge densities, the fact that large divalent counterions preferentially screen the surface charge has a strong effect on pore occupancy; whereas at a very high surface charge density, size-exclusion effects dominate and determine the accessibility of different ions into the pores. Therefore, electrosorption selectivity of ions from a mixture of electrolytes could, in principle, be achieved via tuning the electrical double-layer formation inside the pores through the regulation of surface charge tailored for different ion characteristics. The findings of this work provide important information relevant to ion selectivity during separation processes and energy storage in supercapacitors.


Journal of Chemical Physics | 2008

Monte Carlo simulation of electrical double-layer formation from mixtures of electrolytes inside nanopores

Chia-Hung Hou; Patricia Taboada-Serrano; Sotira Yiacoumi; Costas Tsouris

The formation of the electrical double layer (EDL) in the presence of trivalent and monovalent ions inside a slit-type nanopore was simulated via the canonical Monte Carlo method using a primitive model. In large pores, the distribution of ionic species is similar to that observed in an isolated planar double layer. Screening of surface charge is determined by the competitive effects between ion size and charge asymmetry of the counterions. On the other hand, as the pore size approaches the dimension of the ionic species, phenomena such as EDL overlapping become enhanced by ion-size effects. Simulation results demonstrate that EDL overlapping is not only a function of such parameters as ionic strength and surface charge density, but also a function of the properties of the ionic species involved in the EDL. Furthermore, charge inversion can be observed under certain conditions when dealing with mixtures of asymmetric electrolytes. This phenomenon results from strong ion-ion correlation effects and the asymmetries in size and charge of ionic species, and is most significant in the case of trivalent counterions with larger diameters. The simulation results provide insights into the fundamental mechanisms behind the formation of EDL within nanopores as determined by pore size and by the properties of ionic species present in solution. The findings of this work are relevant to ion sorption and transport within nanostructured materials.


Chemosphere | 2013

A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions

Cuijie Feng; Chia-Hung Hou; Shaohua Chen; Chang-Ping Yu

The microbial fuel cell (MFC) is an emerging technology, which uses exoelectrogenic microorganisms to oxidize organic matter in the wastewater to produce electricity. However, the low energy output limits its application in practice. Capacitive deionization (CDI), an electrochemically controlled method for deionization by the adsorption of ions in the electrical double layer region at an electrode-solution interface, requires a low external power supply. Therefore, in this study, we investigated the MFC driven CDI (MFC-CDI) technology to integrate deionization with wastewater treatment and electricity production. Taking advantage of the low potential requirement of CDI, voltage generated from a continuous flow MFC could be used to drive the CDI to achieve removal of the electrolyte to a stable status. The results indicated that among the three connection types of MFCs including single-, series-, and parallel-configuration, the parallel connection of two MFCs resulted in the highest potential (0.63V) applied to CDI and the conductivity removal of NaCl solution was more than 60%. The electrosorption capacities under different electrolyte concentrations of 50, 100 and 150 mg L(-1) were 150, 346 and 295 μg g(-1), respectively. These results suggest that the new MFC-CDI technology, which utilizes energy recovery from the wastewater, has great potential to be an energy saving technology to remove low level dissolved ions from aqueous solutions for the water and wastewater treatment processes.


Journal of Physical Chemistry B | 2008

Molecular-Sieving Capabilities of Mesoporous Carbon Membranes

Chia-Hung Hou; Xiqing Wang; Chengdu Liang; Sotira Yiacoumi; Costas Tsouris; Sheng Dai

The size-sieving properties of a mesoporous carbon membrane were studied via molecular permeation and cyclic voltammetry experiments. Two phenomena, simple diffusion and electrochemically aided diffusion, were investigated. Molecular diffusion through the membrane was caused by a concentration gradient across the membrane and was facilitated by electrosorption of ions under an externally applied electric field. The diffusion of molecules transported through the membrane was characterized by the values of permeability and apparent diffusion coefficient in the membrane. Because larger molecules are more restricted in terms of penetrating the pores, the size-based selectivity of the mesoporous carbon membrane could be readily observed. For example, in the two-component permeation experiment, a high selectivity (alpha=56.9) of anilinium over Rhodamine B was found. It is inferred that the diffusive transport of the larger Rhodamine B molecules with a more extensive retardation comes from the competitive mechanism between the two kinds of molecules in accessing the pore. A series of voltammetric experiments involving a mesoporous carbon membrane immersed in various electrolytes with ions of different sizes allowed the observation of ion-exclusion phenomena. It was found that the size effect is significant for electrochemically aided diffusion and electrosorption processes. The number of cations inside the pores of the membrane decreases with increasing cation size. This phenomenon is due to the size-exclusion effect, which could be demonstrated by the values of electrical double-layer capacitance for sodium, magnesium, and tetrahexylammonium cations, at potentials ranging from negative values to the point of zero charge, corresponding to 86.7, 73.1, and 50.0 F/g, respectively. The findings of this work manifest that the relationship between the pore size and the dimensions of the molecules determines the transport and sorption behavior of nanoporous carbon materials.


Journal of Hazardous Materials | 2016

Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization

Chen-Shiuan Fan; Ssu-Chia Tseng; Kung-Cheh Li; Chia-Hung Hou

The feasibility of the electro-removal of arsenate (As(V)) and arsenite (As(III)) from aqueous solutions via capacitive deionization was investigated. The effects of applied voltage (0.0-1.2V) and initial concentration (0.1-200mgL(-1)) on arsenic removal were examined. As evidenced, an enhancement of arsenic removal can be achieved by capacitive deionization. The capacity to remove As(V) at an initial concentration of 0.2mgL(-1) on the activated carbon electrode at 1.2V was determined to be 2.47×10(-2)mgg(-1), which is 1.8-fold higher than that of As(III) (1.37×10(-2)mgg(-1)). Notably, the possible transformation of arsenic species was further characterized. The higher effectiveness of As(V) removal via electrosorption at 1.2V was attributed to the formation of an electrical double layer at the electrode/solution interface. The removal of As(III) could be achieved by the oxidation of As(III) to As(V) and subsequent electrosorption of the As(V) onto the electrode surface of the anode. The presence of sodium chloride or natural organic matter was found to considerably decrease arsenic removal. Single-pass electrosorption-desorption experiments conducted at 1.2V further demonstrated that capacitive deionization is a potential means of effectively removing arsenic from aqueous solutions.


Chemosphere | 2015

Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes

Chia-Hung Hou; Nei-Ling Liu

Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials.


Chemosphere | 2016

Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification

Chih Yu Ma; Shih Ching Huang; Pei Hsin Chou; Walter Den; Chia-Hung Hou

In this study, a multiwalled carbon nanotubes-chitosan (CNTs-CS) composite electrode was fabricated to enable water purification by electrosorption. The CNTs-CS composite electrode was shown to possess excellent capacitive behaviors and good pore accessibility by electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry measurements in 1 M H2SO4 electrolyte. Moreover, the CNTs-CS composite electrode showed promising performance for capacitive water desalination. At an electric potential of 1.2 V, the electrosorption capacity and electrosorption rate of NaCl ions on the CNTs-CS composite electrode were determined to be 10.7 mg g(-1) and 0.051 min(-1), respectively, which were considerably higher than those of conventional activated electrodes. The improved electrosorption performance could be ascribed to the existence of mesopores. Additionally, the feasibility of electrosorptive removal of aniline from an aqueous solution has been demonstrated. Upon polarization at 0.6 V, the CNTs-CS composite electrode had a larger electrosorption capacity of 26.4 mg g(-1) and a higher electrosorption rate of 0.006 min(-1) for aniline compared with the open circuit condition. The enhanced adsorption resulted from the improved affinity between aniline and the electrode under electrochemical assistance involving a nonfaradic process. Consequently, the CNT-CS composite electrode, exhibiting typical double-layer capacitor behavior and a sufficient potential range, can be a potential electrode material for application in the electrosorption process.


Journal of The Chinese Institute of Engineers | 2003

Assessment of sludge dewaterability using rheological properties

Chia-Hung Hou; Kung-Cheh Li

Abstract This study evaluates the feasibility of using rheological properties to assess the dewaterability of sludge. Inorganic water sludge and organic activated sludge were conditioned with fly ash and polymer. The rheological characteristics of conditioned sludge, such as sludge viscosity and rheogram, in addition to capillary suction time (CST) and specific resistance to filtration (SRF) were determined. Experimental results indicate that the sludge viscosity and rheogram peak can be used to assess inorganic water sludge dewaterability, but not that of organic activated sludge. Selecting proper rheological parameters for sludge conditioning control depends on sludge types and conditioning methods. The minimum sludge viscosity of inorganic water sludge conditioned with fly ash corresponded to the minimum CST and SRF. Additionally, the specific height of the rheogram peak is an alternative means to determine the best point of coagulation for inorganic water sludge conditioned with polymer.


Scientific Reports | 2016

ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions

Nei-Ling Liu; Saikat Dutta; Rahul R. Salunkhe; Tansir Ahamad; Saad M. Alshehri; Yusuke Yamauchi; Chia-Hung Hou; Kevin C.-W. Wu

Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g−1 in 1 M NaCl at a scan rate of 5 mV·s−1. Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g−1.

Collaboration


Dive into the Chia-Hung Hou's collaboration.

Top Co-Authors

Avatar

Kevin C.-W. Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Kung-Cheh Li

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Costas Tsouris

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen-Shiuan Fan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Nei-Ling Liu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sotira Yiacoumi

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cuijie Feng

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge