Chia Hung Hsieh
China Medical University (PRC)
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chia Hung Hsieh.
PLOS ONE | 2011
Chia Hung Hsieh; Woei Cherng Shyu; Chien Yi Chiang; Jung Wen Kuo; Wu Chung Shen; Ren Shyan Liu
Background Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear. Methodology Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production in glioblastoma cells and xenografts was assayed by in vitro ROS analysis and in vivo molecular imaging studies. NADPH oxidase subunit 4 (Nox4) RNAi-knockdown technology was utilized to study the role of Nox4 in cycling hypoxia-mediated ROS production and tumor progression. Furthermore, glioblastoma cells were stably transfected with a retroviral vector bearing a dual reporter gene cassette that allowed for dynamic monitoring of HIF-1 signal transduction and tumor cell growth in vitro and in vivo, using optical and nuclear imaging. Tempol, an antioxidant compound, was used to investigate the impact of ROS on cycling hypoxia-mediated HIF-1 activation and tumor progression. Principal Findings Glioblastoma cells and xenografts were compared under cycling hypoxic and normoxic conditions; upregulation of NOX4 expression and ROS levels were observed under cycling hypoxia in glioblastoma cells and xenografts, concomitant with increased tumor cell growth in vitro and in vivo. However, knockdown of Nox4 inhibited these effects. Moreover, in vivo molecular imaging studies demonstrated that Tempol is a good antioxidant compound for inhibiting cycling hypoxia-mediated ROS production, HIF-1 activation, and tumor growth. Immunofluorescence imaging and flow cytometric analysis for NOX4, HIF-1 activation, and Hoechst 3342 in glioblastoma also revealed high localized NOX4 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion within the endogenous solid tumor microenvironment. Conclusions Cycling hypoxia-induced ROS via Nox4 is a critical aspect of cancer biology to consider for therapeutic targeting of cycling hypoxia-promoted HIF-1 activation and tumor progression in GBM.
Oncology Reports | 2010
Chia Hung Hsieh; Cheng Hung Lee; Ji An Liang; Chun Yen Yu; Woei Cherng Shyu
Glioblastoma multiforme (GBM) tumors are the most common type of brain tumors and resistance to radiotherapy. This study aimed to investigate the differential effect and mechanism of tumor microenvironments, cycling hypoxia and non-interrupted hypoxia, on tumor cell radiosensitivity in the human U87 glioblastoma tumor model. We exposed U87 cells and mice bearing U87 glioma to experimentally imposed cycling or non-interrupted hypoxic stress in vitro and in vivo prior to treatment with ionizing irradiation. Clonogenic survival assay and tumor growth measurements were performed to determine tumor radiosensitivity. The differential regulation of non-interrupted vs. cycling hypoxia by hypoxia-inducible factor-1 (HIF-1) and the impact of HIF-1α on hypoxia-induced radioresistance were assessed by molecular assay and RNAi-knockdown technology. Our results demonstrated that cycling hypoxia induced higher and longer term HIF-1 signal transduction activity via reactive oxygen species (ROS) in U87 cells compared with non-interrupted hypoxia. Cycling hypoxia-induced HIF-1α activation reflected ROS mediated HIF-1α synthesis and stabilization, whereas non-interrupted hypoxia-induced HIF-1α activation was due to decreased HIF-1α degradation resulting from decreased prolyl hydroxylation. With regard to tumor radiosensitivity, cycling hypoxia induced more tumor cell radioresistance and a decreased response to radiotherapy in U87 cells compared with non-interrupted hypoxia. HIF-1 knockdown during in vitro and in vivo hypoxic stresses combined with radiotherapy suppressed cycling and non-interrupted hypoxia-induced radioresistance while increasing overall tumor radiosensitivity. Our results suggest that cycling hypoxia induces more radioresistance than non-interrupted hypoxia in U87 gliomas, and ROS mediated HIF-1α activation is a crucial mechanism involved in hypoxia-induced differential radioresistant in U87 gliomas.
Free Radical Biology and Medicine | 2012
Chia Hung Hsieh; Chung Pu Wu; Hsu Tung Lee; Ji An Liang; Chun Yen Yu; Yu Jung Lin
Cycling hypoxia is a well-recognized phenomenon within animal and human solid tumors. It mediates tumor progression and radiotherapy resistance through mechanisms that involve reactive oxygen species (ROS) production. However, details of the mechanism underlying cycling hypoxia-mediated radioresistance remain obscure. We have previously shown that in glioblastoma, NADPH oxidase subunit 4 (Nox4) is a critical mediator involved in cycling hypoxia-mediated ROS production and tumor progression. Here, we examined the impact of an in vivo tumor microenvironment on Nox4 expression pattern and its impact on radiosensitivity in GBM8401 and U251, two glioblastoma cell lines stably transfected with a dual hypoxia-inducible factor-1 (HIF-1) signaling reporter construct. Furthermore, in order to isolate hypoxic tumor cell subpopulations from human glioblastoma xenografts based on the physiological and molecular characteristics of tumor hypoxia, several techniques were utilized. In this study, the perfusion marker Hoechst 33342 staining and HIF-1 activation labeling were used together with immunofluorescence imaging and fluorescence-activated cell sorting (FACS). Our results revealed that Nox4 was predominantly highly expressed in the endogenous cycling hypoxic areas with HIF-1 activation and blood perfusion within the solid tumor microenvironment. Moreover, when compared to the normoxic or chronic hypoxic cells, the cycling hypoxic tumor cells derived from glioblastoma xenografts have much higher Nox4 expression, ROS levels, and radioresistance. Nox4 suppression in intracerebral glioblastoma-bearing mice suppressed tumor microenvironment-mediated radioresistance and enhanced the efficiency of radiotherapy. In summary, our findings indicated that cycling hypoxia-induced Nox4 plays an important role in tumor microenvironment-promoted radioresistance in glioblastoma; hence, targeting Nox4 may be an attractive therapeutic strategy for blocking cycling hypoxia-mediated radioresistance.
Molecular Imaging and Biology | 2012
Chia Hung Hsieh; Hao Teng Chang; Wu Chung Shen; Woei Cherng Shyu; Ren Shyan Liu
PurposeWe determined the impact of the cycling hypoxia tumor microenvironment on tumor cell invasion and infiltration in U87 human glioblastoma cells and investigated the underlying mechanisms using molecular bio-techniques and imaging.ProceduresThe invasive phenotype of U87 cells and xenografts exposed to experimentally imposed cycling hypoxic stress in vitro and in vivo was determined by the matrigel invasion assay in vitro and dual optical reporter gene imaging in vivo. RNAi-knockdown technology was utilized to study the role of the NADPH oxidase subunit 4 (Nox4) on cycling hypoxia-mediated tumor invasion.ResultsCycling hypoxic stress significantly promoted tumor invasion in vitro and in vivo. However, Nox4 knockdown inhibited this effect. Nox4-generated reactive oxygen species (ROS) are required for cycling hypoxia-induced invasive potential in U87 cells through the activation of NF-κB- and ERK-mediated stimulation of MMP-9.ConclusionsCycling hypoxia-induced ROS via Nox4 should be considered for therapeutic targeting of tumor cell invasion and infiltration in glioblastoma.
Advanced Materials | 2015
Po Jung Chen; Yi Da Kang; Chen Huan Lin; San-Yuan Chen; Chia Hung Hsieh; You-Yin Chen; Chun Wei Chiang; Wei Lee; Chung Y. Hsu; Lun-De Liao; Chih Tai Fan; Meng-Lin Li; Woei Cherng Shyu
A multifunctional nanoseaurchin probe in which mesoporous silica nanobeads with iron oxide nanoparticles embedded and multi-gold nanorods crystal-seeded are fabricated and labeled with umbilical cord mesenchymal stem cells through endocytosis. This nanoplatform enables efficient magnetic remote-controlled guiding for stem cell homing, and provides dual modalities of photoacoustic imaging and magnetic resonance imaging for in situ tracking and long-term monitoring to achieve therapeutic efficacy.
Journal of Translational Medicine | 2015
Wei Ling Chen; Chi Chung Wang; Yu Jung Lin; Chung Pu Wu; Chia Hung Hsieh
BackgroundCycling hypoxia is a well-recognized phenomenon within animal and human solid tumors. It contributes to the resistance to cytotoxic therapies through anti-apoptotic effects. However, the mechanism underlying cycling hypoxia-mediated anti-apoptosis remains unclear.MethodsReactive oxygen species (ROS) production, activation of the hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear factor-κB (NF-κB) signaling pathways, B-cell lymphoma extra-long (Bcl-xL) expression, caspase activation, and apoptosis in in vitro hypoxic stress-treated glioblastoma cells or tumor hypoxic cells derived from human glioblastoma xenografts were determined by in vitro ROS analysis, reporter assay, western blotting analysis, quantitative real-time PCR, caspase-3 activity assay, and annexin V staining assay, respectively. Tempol, a membrane-permeable radical scavenger, Bcl-xL knockdown, and specific inhibitors of HIF-1α and NF-κB were utilized to explore the mechanisms of cycling hypoxia-mediated resistance to temozolomide (TMZ) in vitro and in vivo and to identify potential therapeutic targets.ResultsBcl-xL expression and anti-apoptotic effects were upregulated under cycling hypoxia in glioblastoma cells concomitantly with decreased responses to TMZ through ROS-mediated HIF-1α and NF-κB activation. Tempol, YC-1 (HIF-1 inhibitor), and Bay 11-7082 (NF-κB inhibitor) suppressed the cycling hypoxia-mediated Bcl-xL induction in vitro and in vivo. Bcl-xL knockdown and Tempol treatment inhibited cycling hypoxia-induced chemoresistance. Moreover, Tempol treatment of intracerebral glioblastoma-bearing mice combined with TMZ chemotherapy synergistically suppressed tumor growth and increased survival rate.ConclusionsCycling hypoxia-induced Bcl-xL expression via ROS-mediated HIF-1α and NF-κB activation plays an important role in the tumor microenvironment-promoted anti-apoptosis and chemoresistance in glioblastoma. Thus, ROS blockage may be an attractive therapeutic strategy for tumor microenvironment-induced chemoresistance.
Stem Cells | 2015
Chen Huan Lin; Lian Chiu; Hsu Tung Lee; Chun Wei Chiang; Shih Ping Liu; Yung Hsiang Hsu; Shinn Zong Lin; Chung Y. Hsu; Chia Hung Hsieh; Woei Cherng Shyu
Understanding stem cell homing, which is governed by environmental signals from the surrounding niche, is important for developing effective stem cell‐based repair strategies. The molecular mechanism by which the brain under ischemic stress recruits bone marrow‐derived cells (BMDCs) to the vascular niche remains poorly characterized. Here we report that hypoxia‐inducible factor‐1α (HIF‐1α) activation upregulates pituitary adenylate cyclase‐activating peptide 38 (PACAP38), which in turn activates PACAP type 1 receptor (PAC1) under hypoxia in vitro and cerebral ischemia in vivo. BMDCs homing to endothelial cells in the ischemic brain are mediated by HIF‐1α activation of the PACAP38‐PAC1 signaling cascade followed by upregulation of cellular prion protein and α6‐integrin to enhance the ability of BMDCs to bind laminin in the vascular niche. Exogenous PACAP38 confers a similar effect in facilitating BMDCs homing into the ischemic brain, resulting in reduction of ischemic brain injury. These findings suggest a novel HIF‐1α‐activated PACAP38‐PAC1 signaling process in initiating BMDCs homing into the ischemic brain for reducing brain injury and enhancing functional recovery after ischemic stroke. Stem Cells 2015;33:1153–1172
Addictive Behaviors | 2015
Wei Ling Chen; Chia Hung Hsieh; Hao Teng Chang; Chia Chun Hung; Chin Hong Chan
INTRODUCTION Substance-induced psychosis (SIP), including alcohol-induced psychotic disorder (AIPD) and substance-induced psychotic disorder (SIPD), is gradually increasing in importance in clinical practice. However, few studies have investigated the epidemiology and progression time from transient to permanent psychiatric disorders for AIPD and SIPD patients. METHODS We utilized the National Health Insurance Research Database (NHIRD) to investigate the incidence and prevalence of AIPD and SIPD in Taiwan and determined the timing of AIPD or SIPD followed by the development of persistent psychotic conditions. RESULTS The average incidence and prevalence were 1.97 and 2.94 per 100,000 person-years for AIPD, 3.09 and 5.67 per 100,000 person-years for SIPD in Taiwan. Moreover, 10.9% to 24.3% of subjects with either AIPD or SIPD had a change in diagnosis to either schizophrenia or affective disorder, and ~50% of patients had a psychotic or affective transformation in their first year after AIPD and SIPD diagnoses. The mean progression time of psychotic or affective transformation was 1.9 to 2.7 years. CONCLUSIONS SIP is a predictive factor for persistent psychotic and affective transformation, and a three-year follow-up may be an optimal clinical practice to prevent psychotic or affective transformation in 60% of patients.
Theranostics | 2017
Hsu Tung Lee; Shih Ping Liu; Chen Huan Lin; Sophie Wei Lee; Chung Y. Hsu; Huey-Kang Sytwu; Chia Hung Hsieh; Woei Cherng Shyu
Inflammatory processes have a detrimental role in the pathophysiology of ischemic stroke. However, little is known about the endogenous anti-inflammatory mechanisms in ischemic brain. Here, we identify CXCL14 as a critical mediator of these mechanisms. CXCL14 levels were upregulated in the ischemic brains of humans and rodents. Moreover, hypoxia inducible factor-1α (HIF-1α) drives hypoxia- or cerebral ischemia (CI)-dependent CXCL14 expression via directly binding to the CXCL14 promoter. Depletion of CXCL14 inhibited the accumulation of immature dendritic cells (iDC) or regulatory T cells (Treg) and increased the infarct volume, whereas the supplementation of CXCL14 had the opposite effects. CXCL14 promoted the adhesion, migration, and homing of circulating CD11c+ iDC to the ischemic tissue via the upregulation of the cellular prion protein (PrPC), PECAM-1, and MMPs. The accumulation of Treg in ischemic areas of the brain was mediated through a cooperative effect of CXCL14 and iDC-secreted IL-2-induced Treg differentiation. Interestingly, CXCL14 largely promoted IL-2-induced Treg differentiation. These findings indicate that CXCL14 is a critical immunomodulator involved in the stroke-induced inflammatory reaction. Passive CXCL14 supplementation provides a tractable path for clinical translation in the improvement of stroke-induced neuroinflammation.
Scientific Reports | 2016
Hsu Tung Lee; Hao Teng Chang; Sophie Wei Lee; Chen Huan Lin; Jia Rong Fan; Shinn Zong Lin; Chung Y. Hsu; Chia Hung Hsieh; Woei Cherng Shyu
To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)–expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R+ hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R+ hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways.