Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chia-Lin Hsu is active.

Publication


Featured researches published by Chia-Lin Hsu.


PLOS ONE | 2010

IL-33 Is Produced by Mast Cells and Regulates IgE-Dependent Inflammation

Chia-Lin Hsu; Colleen V. Neilsen; Paul J. Bryce

Background IL-33 is a recently characterized IL-1 family cytokine and found to be expressed in inflammatory diseases, including severe asthma and inflammatory bowl disease. Recombinant IL-33 has been shown to enhance Th2-associated immune responses and potently increase mast cell proliferation and cytokine production. While IL-33 is constitutively expressed in endothelial and epithelial cells, where it may function as a transcriptional regulator, cellular sources of IL-33 and its role in inflammation remain unclear. Methodology/Principal Findings Here, we identify mast cells as IL-33 producing cells. IgE/antigen activation of bone marrow-derived mast cells or a murine mast cell line (MC/9) significantly enhanced IL-33. Conversely, recombinant IL-33 directly activated mast cells to produce several cytokines including IL-4, IL-5 and IL-6 but not IL-33. We show that expression of IL-33 in response to IgE-activation required calcium and that ionomycin was sufficient to induce IL-33. In vivo, peritoneal mast cells expressed IL-33 and IL-33 levels were significantly lower within the skin of mast cell deficient mice, compared to littermate controls. Local activation of mast cells promotes edema, followed by the recruitment of inflammatory cells. We demonstrate using passive cutaneous anaphylaxis, a mast cell-dependent model, that deficiency in ST2 or antibody blockage of ST2 or IL-33 ablated the late phase inflammatory response but that the immediate phase response was unaffected. IL-33 levels in the skin were significantly elevated only during the late phase. Conclusions/Significance Our findings demonstrate that mast cells produce IL-33 after IgE-mediated activation and that the IL-33/ST2 pathway is critical for the progression of IgE-dependent inflammation.


Journal of Immunology | 2011

Antigen-Fixed Leukocytes Tolerize Th2 Responses in Mouse Models of Allergy

Charles B. Smarr; Chia-Lin Hsu; Adam J. Byrne; Stephen D. Miller; Paul J. Bryce

Allergic diseases, including asthma and food allergies, are an increasing health concern. Immunotherapy is an effective therapeutic approach for many allergic diseases but requires long dose escalation periods and has a high risk of adverse reactions, particularly in food allergy. New methods to safely induce Ag-specific tolerance could improve the clinical approach to allergic disease. We hypothesized that Ag-specific tolerance induced by the i.v. injection of Ags attached to the surface of syngeneic splenic leukocytes (Ag-coupled splenocytes [Ag-SPs]) with the chemical cross-linking agent ethylene-carbodiimide, which effectively modulate Th1/Th17 diseases, may also safely and efficiently induce tolerance in Th2-mediated mouse models of allergic asthma and food allergy. Mice were tolerized with Ag-SP before or after initiation of OVA/alum-induced allergic airway inflammation or peanut-induced food allergy. The effects on disease pathology and Th2-directed cytokine and Ab responses were studied. Ag-SP tolerance prevented disease development in both models and safely tolerized T cell responses in an Ag-specific manner in presensitized animals. Prophylactically, Ag-SP efficiently decreased local and systemic Th2 responses, eosinophilia, and Ag-specific IgE. Interestingly, Ag-SP induced Th2 tolerance was found to be partially dependent on the function of CD25+ regulatory T cells in the food allergy model, but was regulatory T cell independent in the model of allergic airway inflammation. We demonstrate that Ag-SP tolerance can be rapidly, safely, and efficiently induced in murine models of allergic disease, highlighting a potential new Ag-specific tolerance immunotherapy for Th2-associated allergic diseases.


Journal of Immunology | 2012

Inducible IL-33 Expression by Mast Cells Is Regulated by a Calcium-Dependent Pathway

Chia-Lin Hsu; Paul J. Bryce

IL-33 is an IL-1 family cytokine that displays dual functions: a cytokine via its receptor, T1/ST2, or a chromatin-binding factor within the nucleus. Functionally, it promotes Th2-associated immunity by enhancing the activation and survival of several cell types. However, the pathways regulating IL-33 expression are still unclear. Although several cells display constitutive expression of IL-33, we showed previously that mast cells expressed low levels of IL-33 constitutively but that IL-33 was induced upon IgE-mediated activation. This was mediated via a calcium-dependent mechanism. In this study, we define the pathway through which this inducible IL-33 is regulated. Importantly, this pathway does not alter expression in cells with high constitutive IL-33 expression, such as epithelial cells or fibroblasts. Our data show that, upstream of calcium, inhibition of PI3K and Sphk activity decreases inducible IL-33 expression to IgE/Ag activation. Additionally, expression of Sphk1 short hairpin RNA prevents upregulation of IL-33 expression. Downstream of calcium, NFAT activity is necessary and sufficient for inducible IL-33 expression. We also demonstrate calcium-dependent transcription from two regions of the IL-33 gene that contain putative NFAT-binding sites, one upstream of exon 1 and one upstream of the start site. Interestingly, we show that blocking other calcium pathways, including inositol triphosphate receptor, or NF-κB inhibits IgE-driven IL-1β, another IL-1 family cytokine, but it has no influence on inducible IL-33 expression. In summary, our data demonstrate cell-specific differences in the regulation of IL-33 expression and define a pathway critical for the expression of inducible IL-33 by mast cells upon their activation.


Journal of Immunology | 2016

IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis

Laura K. Johnston; Chia-Lin Hsu; Rebecca Krier-Burris; Krishan D. Chhiba; Karen B. Chien; Andrew N. J. McKenzie; Sergejs Berdnikovs; Paul J. Bryce

Eosinophils are important in the pathogenesis of many diseases, including asthma, eosinophilic esophagitis, and eczema. Whereas IL-5 is crucial for supporting mature eosinophils (EoMs), the signals that support earlier eosinophil lineage events are less defined. The IL-33R, ST2, is expressed on several inflammatory cells, including eosinophils, and is best characterized for its role during the initiation of allergic responses in peripheral tissues. Recently, ST2 expression was described on hematopoietic progenitor subsets, where its function remains controversial. Our findings demonstrate that IL-33 is required for basal eosinophil homeostasis, because both IL-33– and ST2-deficient mice exhibited diminished peripheral blood eosinophil numbers at baseline. Exogenous IL-33 administration increased EoMs in both the bone marrow and the periphery in wild-type and IL-33–deficient, but not ST2-deficient, mice. Systemic IL-5 was also increased under this treatment, and blocking IL-5 with a neutralizing Ab ablated the IL-33–induced EoM expansion. The homeostatic hypereosinophilia seen in IL-5–transgenic mice was significantly lower with ST2 deficiency despite similar elevations in systemic IL-5. Finally, in vitro treatment of bone marrow cells with IL-33, but not IL-5, led to specific early expansion of IL-5Rα–expressing precursor cells. In summary, our findings establish a basal defect in eosinophilopoiesis in IL-33– and ST2-deficient mice and a mechanism whereby IL-33 supports EoMs by driving both systemic IL-5 production and the expansion of IL-5Rα–expressing precursor cells.


Journal of Immunology | 2017

Transcriptional Heterogeneity of Mast Cells and Basophils upon Activation.

Krishan D. Chhiba; Chia-Lin Hsu; Sergejs Berdnikovs; Paul J. Bryce

Mast cells and basophils are developmentally related cells whose activation is a hallmark of allergy. Functionally, mast cells and basophils overlap in their ability to produce several mediators, including histamine and granule proteases, but studies have increasingly demonstrated nonredundant roles. To characterize the transcriptional heterogeneity of mast cells and basophils upon their activation, we performed large-scale comparative microarrays of murine bone marrow–derived mast cells and bone marrow–derived basophils (BMBs) at rest, upon an adaptive-type activation (IgE cross-linking), or upon an innate-type activation (IL-33 stimulation). Hierarchical clustering demonstrated that bone marrow–derived mast cells and BMBs shared specific activation-associated transcriptional signatures but differed in other signatures both between cell type and between activation mode. In bone marrow–derived mast cells, IgE cross-linking upregulated 785 genes, including Egr2, Ccl1, and Fxyd6, whereas IL-33 stimulation induced 823 genes, including Ccl1, Egr2, and Il1b. Focused bioinformatics pathway analysis demonstrated that IgE activation aligned with processes such as oxidative phosphorylation, angiogenesis, and the p53 pathway. The IL-33–activated transcriptome was enriched in genes commonly altered by NF-κB in response to TNF, by IL-6 via STAT3, and in response to IFN-γ. Furthermore, BMBs activated via IgE cross-linking selectively induced immune response genes Ccl1, Il3, and Il2 compared with IL-33–stimulated BMBs. Principal-component analysis revealed key cell- and activation-specific clustering. Overall, our data demonstrate that mast cells and basophils have cell- and activation-specific transcriptional responses and suggest that context-specific gene networks and pathways may shape how the immune system responds to allergens and innate cytokines.


Journal of Immunology | 2015

Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation

Hiam Abdala-Valencia; Paul J. Bryce; Robert P. Schleimer; Joshua B. Wechsler; Lucas F. Loffredo; Joan M. Cook-Mills; Chia-Lin Hsu; Sergejs Berdnikovs

Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow–derived mast cells from CD151−/− mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI-induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells.


Mucosal Immunology | 2018

Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis

Joshua B. Wechsler; A Szabo; Chia-Lin Hsu; R A Krier-Burris; H. A. Schroeder; M Y Wang; R G Carter; T E Velez; L M Aguiniga; Jeffrey B. Brown; M L Miller; Barry K. Wershil; Terrence A. Barrett; Paul J. Bryce

Ulcerative colitis (UC) patients exhibit elevated histamine, but how histamine exacerbates disease is unclear as targeting histamine 1 receptor (H1R) or H2R is clinically ineffective. We hypothesized that histamine functioned instead through the other colon-expressed histamine receptor, H4R. In humans, UC patient biopsies exhibited increased H4R RNA and protein expression over control tissue, and immunohistochemistry showed that H4R was in proximity to immunopathogenic myeloperoxidase-positive neutrophils. To characterize this association further, we employed both the oxazolone (Ox)- and dextran sulfate sodium (DSS)-induced experimental colitis mouse models and also found upregulated H4R expression. Mast cell (MC)-derived histamine and H4R drove experimental colitis, as H4R–/– mice had lower symptom scores, neutrophil-recruitment mediators (colonic interleukin-6 (IL-6), CXCL1, CXCL2), and mucosal neutrophil infiltration than wild-type (WT) mice, as did MC-deficient KitW-sh/W-sh mice reconstituted with histidine decarboxylase–deficient (HDC−/−) bone marrow–derived MCs compared with WT-reconstituted mice; adaptive responses remained intact. Furthermore, Rag2−/− × H4R−/− mice had reduced survival, exacerbated colitis, and increased bacterial translocation than Rag2−/− mice, revealing an innate protective antibacterial role for H4R. Taken together, colonic MC-derived histamine initiates granulocyte infiltration into the colonic mucosa through H4R, suggesting alternative therapeutic targets beyond adaptive immunity for UC.


The Journal of Allergy and Clinical Immunology | 2016

Humanized mouse model of mast cell–mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis

Paul J. Bryce; Rustom Falahati; Laurie L. Kenney; John Leung; Christopher Bebbington; Nenad Tomasevic; Rebecca Krier; Chia-Lin Hsu; Leonard D. Shultz; Dale L. Greiner; Michael A. Brehm


The Journal of Allergy and Clinical Immunology | 2012

Rapid Induction of Tolerance To Peanut By Antigen-coupled Cell Transfer

Chia-Lin Hsu; Charles B. Smarr; Adam J. Byrne; Stephen D. Miller; Paul J. Bryce


The Journal of Allergy and Clinical Immunology | 2014

IgE–Mediated Mast Cell Responses Are Inhibited By Thymol-Mediated Activation-Induced Cell Death

Joshua B. Wechsler; Chia-Lin Hsu; Paul J. Bryce

Collaboration


Dive into the Chia-Lin Hsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua B. Wechsler

Children's Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge