Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chia-Yang Lu is active.

Publication


Featured researches published by Chia-Yang Lu.


Journal of Nutritional Biochemistry | 2013

Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways.

Ya-Chen Yang; Chong-Kuei Lii; Yu-Ling Wei; Chien-Chun Li; Chia-Yang Lu; Kai-Li Liu; Haw-Wen Chen

We examined the underlying mechanisms involved in n-3 docosahexaenoic acid (DHA) inhibition of inflammation in EA.hy926 cells. The present results demonstrated that pretreatment with DHA (50 and 100 μM) inhibited tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule 1 (ICAM-1) protein, mRNA expression and promoter activity. In addition, TNF-α-stimulated inhibitory kappa B (IκB) kinase (IKK) phosphorylation, IκB phosphorylation and degradation, p65 nuclear translocation, and nuclear factor-κB (NF-κB) and DNA binding activity were attenuated by pretreatment with DHA. DHA triggered early-stage and transient reactive oxygen species (ROS) generation and significantly increased the protein expression of heme oxygenase 1 (HO-1), induced nuclear factor erythroid 2-related factor 2 (Nrf2) translocation to the nucleus and up-regulated antioxidant response element (ARE)-luciferase reporter activity. Moreover, DHA inhibited Nrf2 ubiquitination and proteasome activity. DHA activated Akt, p38 and ERK1/2 phosphorylation, and specific inhibitors of respective pathways attenuated DHA-induced Nrf2 nuclear translocation and HO-1 expression. Transfection with HO-1 siRNA knocked down HO-1 expression and partially reversed the DHA-mediated inhibition of TNF-α-induced p65 nuclear translocation and ICAM-1 expression. Importantly, we show for the first time that HO-1 plays a down-regulatory role in NF-κB nuclear translocation, and inhibition of Nrf2 ubiquitination and proteasome activity are involved in increased cellular Nrf2 level by DHA. In this study, we show that HO-1 plays a down-regulatory role in NF-κB nuclear translocation and that the protective effect of DHA against inflammation is partially via up-regulation of Nrf2-mediated HO-1 expression and inhibition of IKK/NF-κB signaling pathway.


Carcinogenesis | 2013

Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells

Che-Yi Chao; Chong-Kuei Lii; Ya-Ting Hsu; Chia-Yang Lu; Kai-Li Liu; Chien-Chun Li; Haw-Wen Chen

Matrix metalloproteinase-9 (MMP-9) plays a critical role in cancer metastasis. Andrographolide (AP) is a diterpene lactone in the leaves and stem of Andrographis paniculata (Burm. f) Ness that has been reported to possess anticancer activity. In this study, we investigated the effect of AP on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression and invasion in MCF-7 breast cancer cells and the possible mechanisms involved. The results showed that AP dose-dependently inhibited TPA-induced MMP-9 protein expression, enzyme activity, migration and invasion. In addition, AP significantly induced heme oxygenase-1 (HO-1) messenger RNA (mRNA) and protein expression. Transfection with HO-1 small interfering RNA knocked down the HO-1 expression and reversed the inhibition of MMP-9 expression by AP. HO-1 end products, such as carbon monoxide, free iron and bilirubin, suppressed the TPA-induced MMP-9 mRNA and protein expression, enzyme activity, migration and invasion in MCF-7 cells. Furthermore, TPA-induced extracellular signal-regulated kinase (ERK) 1/2 and Akt phosphorylation and the DNA binding activity of activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) were attenuated by pretreatment with AP and HO-1 end products. In conclusion, these results suggest that AP inhibits TPA-induced cell migration and invasion by reducing MMP-9 activation, which is mediated mainly by inhibition of the ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways and subsequent AP-1 and NF-κB transactivation. Additionally, induction of HO-1 expression is at least partially involved in the inhibition of TPA-induced MMP-9 activation and cell migration in MCF-7 cells by AP.


Biochemical Pharmacology | 2014

Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells

Chia-Yang Lu; Ya-Chen Yang; Chien-Chun Li; Kai-Li Liu; Chong-Kuei Lii; Haw-Wen Chen

Andrographolide, the major bioactive component of Andrographis paniculata, has been demonstrated to have various biological properties including anti-inflammation, antioxidation, and anti-hepatotoxicity. Oxidative stress is considered a major risk factor in aging, inflammation, cancer, atherosclerosis, and diabetes mellitus. NADPH oxidase is a major source of endogenous reactive oxygen species (ROS). In this study, we used EA.hy926 endothelial-like cells to explore the anti-inflammatory activity of andrographolide. Andrographolide attenuated TNFα-induced ROS generation, Src phosphorylation, membrane translocation of the NADPH oxidase subunits p47(phox) and p67(phox), and ICAM-1 gene expression. In the small hairpin RNA interference assay, shp47(phox) abolished TNFα-induced p65 nuclear translocation, ICAM-1 gene expression, and adhesion of HL-60 cells. Andrographolide induced the gene expression of heme oxygenase 1 (HO-1) and glutamate cysteine ligase modifier subunit (GCLM) in a time-dependent manner. Cellular glutathione (GSH) content was increased by andrographolide. shGCLM attenuated the andrographolide-induced increase in GSH content and reversed the andrographolide inhibition of HL-60 adhesion. shHO-1 showed a similar effect on andrographolide inhibition of HL-60 adhesion to shGCLM. The mechanism underlying the up-regulation of HO-1 and GCLM by andrographolide was dependent on the PI3K/Akt pathway, and both the Nrf2 and AP-1 transcriptional factors were involved. Our results suggest that andrographolide attenuates TNFα-induced ICAM-1 expression at least partially through suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression, which is PI3K/Akt pathway-dependent.


Journal of Agricultural and Food Chemistry | 2010

Induction of Heme Oxygenase 1 and Inhibition of Tumor Necrosis Factor α-Induced Intercellular Adhesion Molecule Expression by Andrographolide in EA.hy926 Cells

Ai-Lin Yu; Chia-Yang Lu; Tsu-Shing Wang; Chia-Wen Tsai; Kai-Li Liu; Yi-Ping Cheng; Hebron C. Chang; Chong-Kuei Lii; Haw-Wen Chen

Andrographolide is the most abundant diterpene lactone in Andrographis paniculata, which is widely used as a traditional medicine in Southeast Asia. Heme oxygenase 1 (HO-1) is an antioxidant enzyme encoded by a stress-responsive gene. HO-1 has been reported to inhibit the expression of adhesion molecules in vascular endothelial cells (EC). Intercellular adhesion molecule (ICAM-1) is an inflammatory biomarker that is involved in the adhesion of monocytes to EC. In this study, we investigated the effect of andrographolide on the expression of ICAM-1 induced by tumor necrosis factor alpha (TNF-alpha) in EA.hy926 cells and the possible mechanisms involved. Andrographolide (2.5-7.5 microM) inhibited the TNF-alpha-induced expression of ICAM-1 in a dose-dependent manner and resulted in a decrease in HL-60 cell adhesion to EA.hy926 cells (p < 0.05). In parallel, andrographolide significantly induced the expression of HO-1 in a concentration-dependent fashion (p < 0.05). Andrographolide increased the rate of nuclear translocation of nuclear factor erythroid 2-related 2 (Nrf2) and induced antioxidant response element-luciferase reporter activity. Transfection with HO-1-specific small interfering RNA knocked down HO-1 expression, and the inhibition of expression of ICAM-1 by andrographolide was significantly reversed. These results suggest that stimulation of Nrf2-dependent HO-1 expression is involved in the suppression of TNF-alpha-induced ICAM-1 expression exerted by andrographolide.


Journal of Agricultural and Food Chemistry | 2014

Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells.

Che-Yi Chao; Chong-Kuei Lii; Siou-Yu Ye; Chien-Chun Li; Chia-Yang Lu; Ai-Hsuan Lin; Kai-Li Liu; Haw-Wen Chen

Cell migration plays an important role in angiogenesis and wound repair. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is essential for endothelial cell survival, proliferation, and migration. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, shows both anti-inflammatory and antioxidant activities in vitro and in vivo. This study investigated the molecular mechanism by which DHA down-regulates VEGF-induced cell migration. HUVECs were used as the study model, and the MTT assay, Western blot, wound-healing assay, and phosphatase activity assay were used to explore the effects of DHA on cell migration. GPR120 is the putative receptor for DHA action. The results showed that DHA, PD98059 (an ERK1/2 inhibitor), and GW9508 (a GPR120 agonist) inhibited VEGF-induced cell migration. In contrast, pretreatment with okadaic acid (OA, a PP2A inhibitor) and S-nitroso-N-acetyl-DL-penicillamine (an NO donor) reversed the inhibition of cell migration by DHA. VEGF-induced cell migration was accompanied by phosphorylation of ERK1/2 and eNOS. Treatment of HUVECs with DHA increased PP2A enzyme activity and decreased VEGF-induced phosphorylation of ERK1/2 and eNOS. However, pretreatment with OA significantly decreased DHA-induced PP2A enzyme activity and reversed the DHA inhibition of VEGF-induced ERK1/2 and eNOS phosphorylation. These results suggest that stimulation of PP2A activity and inhibition of the VEGF-induced ERK1/2/eNOS signaling pathway may be involved in the DHA suppression of VEGF-induced cell migration. Thus, the effect of DHA on angiogenesis and wound repair is at least partly by virtue of its attenuation of cell migration.


Journal of Nutritional Biochemistry | 2010

Docosahexaenoic acid down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes via the sphingomyelinase/ceramide pathway

Chia-Yang Lu; Chien-Chun Li; Kai-Li Liu; Chia-Wen Tsai; Chong-Kuei Lii; Haw-Wen Chen

Docosahexaenoic acid (DHA) regulates the expression of cytochrome P450 2B1 (CYP 2B1) in rat primary hepatocytes in response to xenobiotics. Ceramide, a lipid signaling molecule, is involved in various physiological processes and can be generated by the hydrolysis of sphingomyelin via sphingomyelinase (SMase). DHA activates SMase and increases ceramide formation in vitro. Ceramides differentially enhance adenylyl cyclase activity in vitro depending on the chain length of their fatty acids. In addition, the cAMP-dependent PKA pathway down-regulates CYP 2B1 expression induced by phenobarbital (PB). In the present study, we determined the effect of DHA on SMase transactivation and the downstream pathway in CYP 2B1 expression induced by PB. SMase was activated by DHA 2 h after treatment, and D609 (an SMase inhibitor) attenuated the inhibition of PB-induced CYP 2B1 expression by DHA. Ceramide formation reached a maximum 3 h after DHA administration. C2-ceramide dose-dependently inhibited PB-induced CYP 2B1 expression and increased intracellular cAMP concentrations. SQ22536 (an adenylyl cyclase inhibitor) and H89 (a PKA-specific inhibitor) partially reversed the inhibition of PB-induced CYP 2B1 expression by C2-ceramide. These results suggest that stimulation of SMase, generation of ceramide and activation of the cAMP-dependent PKA pathway are involved in the inhibition exerted by DHA.


Environmental Toxicology | 2017

Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells.

Hung-Chih Lin; Shih-Li Su; Chia-Yang Lu; Ai-Hsuan Lin; Wan-Chun Lin; Chin-San Liu; Ya-Chen Yang; Hsiu-Miao Wang; Chong-Kuei Lii; Haw-Wen Chen

Andrographolide, the main bioactive component of the medicinal plant Andrographis paniculata, has been shown to possess potent anti‐inflammatory activity. Endothelin 1 (ET‐1), a potent vasoconstrictor peptide produced by vascular endothelial cells, displays proinflammatory property. Hypoxia‐inducible factor 1α (HIF‐1α), the regulatory member of the transcription factor heterodimer HIF‐1α/β, is one of the most important molecules that responds to hypoxia. Changes in cellular HIF‐1α protein level are the result of altered gene transcription and protein stability, with the latter being dependent on prolyl hydroxylases (PHDs). In this study, inhibition of pro‐inflammatory ET‐1 expression and changes of HIF‐1α gene transcription and protein stability under hypoxia by andrographolide in EA.hy926 endothelial‐like cells were investigated. Hypoxic conditions were created using the hypoxia‐mimetic agent CoCl2. We found that hypoxia stimulated the production of reactive oxygen species (ROS), the expression of HIF‐1α mRNA and protein, and the expression and secretion of ET‐1. These effects, however, were attenuated by co‐exposure to andrographolide, bilirubin, and RuCO. Silencing Nrf2 and heme oxygenase 1 (HO‐1) reversed the inhibitory effects of andrographolide on hypxoia‐induced HIF‐1α mRNA and protein expression. Moreover, andrographolide increased the expression of prolyl hydroxylases (PHD) 2/3, which hydroxylate HIF‐1α and promotes HIF‐1α proteasome degradation, with an increase in HIF‐1α hydroxylation was noted under hypoxia. Inhibition of p38 MAPK abrogated the hypoxia‐induced increases in HIF‐1α mRNA and protein expression as well as ET‐1 mRNA expression and secretion. Taken together, these results suggest that andrographolide suppresses hypoxia‐induced pro‐inflammatory ET‐1 expression by activating Nrf2/HO‐1, inhibiting p38 MAPK signaling, and promoting PHD2/3 expression.


Molecular Nutrition & Food Research | 2016

Docosahexaenoic acid inhibits inflammation via free fatty acid receptor FFA4, disruption of TAB2 interaction with TAK1/TAB1 and downregulation of ERK-dependent Egr-1 expression in EA.hy926 cells.

Kai-Li Liu; Ya-Chen Yang; Hsien-Tsung Yao; Ting-Wen Chia; Chia-Yang Lu; Chien-Chun Li; Henry J. Tsai; Chong-Kuei Lii; Haw-Wen Chen

SCOPE Inflammation is intimately associated with many cardiovascular events and docosahexaenoic acid (DHA) has been shown to protect against CVD. Egr-1 has emerged as a key regulator in the development of atherosclerosis. Free fatty acid receptor 4 (FFA4) is an n-3 FA membrane receptor. Tumor necrosis factor alpha (TNF-α) is an inflammatory mediator and transforming growth factor-β-activated kinase 1 (TAK1) is essential in the TNF-α-mediated activation of NF-κB. We examined the mechanisms underlying DHA inhibition of inflammation in human EA.hy926 cells. METHODS AND RESULTS TNF-α markedly induced the interaction between TAK1 binding protein (TAB) 2 and TAK1/TAB1, the phosphorylation of ERK, p38 MAPK and Akt, the expression of Egr-1 and ICAM-1, and HL-60 (monocyte-like) cell adhesion. Pretreatment with DHA attenuated TNF-α-induced phosphorylation of ERK, expression of Egr-1 and ICAM-1 and HL-60 cell adhesion. Transfection with siFFA4 reversed the DHA-mediated inhibition of TNF-α-induced Egr-1 and ICAM-1 expression, HL-60 cell adhesion and NF-κB and DNA-binding activity. CONCLUSION Our results suggest that the anti-inflammatory effect of DHA on the endothelium is at least partially linked to FFA4, disruption of TAB2 interaction with TAK1/TAB1 and downregulation of ERK-dependent Egr-1 and ICAM-1 expression, which leads to less HL-60 cell adhesion to TNF-α-stimulated EA.hy926 cells.


Journal of Agricultural and Food Chemistry | 2010

Activation of the cAMP/CREB/inducible cAMP early repressor pathway suppresses andrographolide-induced gene expression of the π class of glutathione S-transferase in rat primary hepatocytes.

Ai-Jen Yang; Chien-Chun Li; Chia-Yang Lu; Kai-Li Liu; Chia-Wen Tsai; Chong-Kuei Lii; Haw-Wen Chen

Andrographolide (Ap) is a bioactive compound in Andrographis paniculata that is a Chinese herb. The pi class of glutathione S-transferase (GSTP) is one kind of phase II detoxification enzyme. Here we show that induction of GSTP protein and mRNA expression in rat primary hepatocytes by Ap was inhibited by forskolin and a variety of cAMP analogues. The inhibitory effect of the cAMP analogues was partially blocked by pretreatment with H89. In the presence of Ap, forskolin, or both, the expression of phospho-cAMP response element-binding protein (CREB) was increased. Ap alone had no effect on inducible cAMP early repressor (ICER) mRNA expression; however, Ap played a potentiating role in forskolin-induced ICER mRNA expression. An EMSA and immunoprecipitation assay showed that ICER binding to cAMP-response element (CRE) was increased in cells cotreated with Ap and forskolin for 3 and 8 h. Taken together, these results suggest that ICER is likely to be involved in the suppression of Ap-induced GSTP expression caused by the increase of cAMP in rat primary hepatocytes.


Nutrition and Cancer | 2015

Docosahexaenoic Acid Downregulates EGF-Induced Urokinase Plasminogen Activator and Matrix Metalloproteinase 9 Expression by Inactivating EGFR/ErbB2 Signaling in SK-BR3 Breast Cancer Cells

Chien-Chun Li; Hsien-Tsung Yao; Fang-Ju Cheng; Yi-Hsien Hsieh; Chia-Yang Lu; Chih-Chung Wu; Kai-Li Liu; Jer-Wei Chang

Urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) play crucial roles in tumor metastasis. Despite the well-known anticancer role of docosa-hexaenoic acid (DHA), its specific effect on ErbB2-mediated breast cancer metastasis is not fully clarified. In this study, we investigated the effect of DHA on epidermal growth factor (EGF)-induced uPA and MMP-9 activity, expression and cell invasion in SK-BR3 breast cancer cells and the possible mechanisms involved. The results showed that EGF (40 ng/ml) induced uPA and MMP-9 mRNA and protein expression, enzyme activity, and 100 μM DHA significantly inhibited EGF-induced uPA and MMP-9 mRNA, protein expression, enzyme activity, cell migration, and cell invasion. EGF increased protein expression and phosphorylation of EGF receptor (EGFR) and ErbB2 as well as of JNK2, ERK1/2, and Akt, and these changes were attenuated by DHA pretreatment. AG1478, an inhibitor of EGFR, also attenuated EGF-induced activation of EGFR, JNK2, ERK1/2, and Akt. Knocked down ErbB2 expression resulted in a similar inhibition of uPA and MMP-9 expression as noted by DHA and AG1478. Taken together, these results suggest that suppression of EGF-induced metastasis by DHA is likely through an inhibition of EGFR and ErbB2 protein expression and the downstream target uPA and MMP-9 activation in SK-BR3 human breast cancer cells.

Collaboration


Dive into the Chia-Yang Lu's collaboration.

Top Co-Authors

Avatar

Kai-Li Liu

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Chien-Chun Li

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Ai-Jen Yang

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Chih-Chung Wu

Chang Jung Christian University

View shared research outputs
Top Co-Authors

Avatar

Fang-Ju Cheng

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Shih-Li Su

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Tsu-Shing Wang

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi-Hsien Hsieh

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi-Ping Cheng

Chung Shan Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge