Chia Yeh Miu
National Taiwan Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chia Yeh Miu.
Inorganic Chemistry | 2008
Minghuey Shieh; Chia Yeh Miu; Chang Ju Lee; Wei G. Chen; Yen Yi Chu; Hui Lung Chen
A new family of CuX-, Cu(2)X(2)-, and Cu(4)X(2)-incorporated mono- or di-SeFe(3)-based carbonyl clusters were constructed and structurally characterized. When the selenium-capped triiron carbonyl cluster [Et(4)N](2)[SeFe(3)(CO)(9)] was treated with 1-3 equiv of CuX in tetrahydrofuran (THF) at low or room temperatures, CuX-incorporated SeFe(3) complexes [Et(4)N](2)[SeFe(3)(CO)(9)CuX] (X = Cl, [Et(4)N](2)[1a]; Br, [Et(4)N](2)[1b]; I, [Et(4)N](2)[1c]), Cu(2)X(2)-incorporated SeFe(3) clusters [Et(4)N](2)[SeFe(3)(CO)(9)Cu(2)X(2)] (X = Cl, [Et(4)N](2)[2a]; Br, [Et(4)N](2)[2b]), and Cu(4)X(2)-linked di-SeFe(3) clusters [Et(4)N](2)[{SeFe(3)(CO)(9)}(2)Cu(4)X(2)] (X = Cl, [Et(4)N](2)[3a]; Br, [PPh(4)](2)[3b]) were obtained, respectively, in good yields. SeFe(3)CuX complexes 1a and 1b were found to undergo cluster expansion to form SeFe(3)Cu(2)X(2) complexes 2a and 2b, respectively, upon the addition of 1 equiv of CuX (X = Cl, Br). Furthermore, complexes 2a and 2b can expand further to form Cu(4)X(2)-linked di-SeFe(3) clusters 3a and 3b, upon treatment with 1 equiv of CuX (X = Cl, Br). [Et(4)N](4)[{SeFe(3)(CO)(9)(CuCl)(2)}(2)] ([Et(4)N](4)[4a]) was produced when the reaction of [Et(4)N](2)[SeFe(3)(CO)(9)] with 2 equiv of CuCl was conducted in THF at 40 degrees C. The Cu(2)Cl(2)-linked di-SeFe(3)CuCl cluster 4a is a dimerization product derived from complex 2a. Further, it is found that complex 4a can convert to the Cu(4)Cl(2)-linked di-SeFe(3) cluster 3a upon treatment with CuCl. The nature, formation, stepwise cluster expansion, and electrochemical properties of these CuX-, Cu(2)X(2)-, and Cu(4)X(2)-incorporated mono- or di-SeFe(3)-based clusters are elucidated in detail by molecular calculations at the B3LYP level of the density functional theory in terms of the effects of selenium, iron, copper halides, and the size of the metal skeleton.
Inorganic Chemistry | 2010
Minghuey Shieh; Chien Nan Lin; Chia Yeh Miu; Miao Hsing Hsu; Yi Wen Pan; Li Fang Ho
The paramagnetic even-electron cluster, [Et(4)N](2)[Se(2)Cr(3)(CO)(10)], was found to react readily with Mn(CO)(5)Br in acetone to produce two unprecedented mixed chromium-manganese selenide carbonyl complexes, [Et(4)N][Me(2)CSe(2){Mn(CO)(4)}{Cr(CO)(5)}(2)] ([Et(4)N][1]) and [Et(4)N](2)[Se(2)Mn(3)(CO)(10){Cr(CO)(5)}(2)] ([Et(4)N](2)[2]). X-ray crystallographic analysis showed that anion 1 consisted of two Se-Cr(CO)(5) moieties, which were further bridged by one isopropylene group and one Mn(CO)(4) moiety. The dianionic cluster 2 was shown to display a Se(2)Mn(3) square-pyramidal core with each Se atom externally coordinated by one Cr(CO)(5) group. The formation of complex 1, presumably via C=O activation of acetone, was further facilitated by acidification of the reaction of [Et(4)N](2)[Se(2)Cr(3)(CO)(10)] with Mn(CO)(5)Br in acetone. Complex 1 readily transformed into 2 upon treatment with Mn(2)(CO)(10) in a KOH/MeOH/MeCN solution. Cluster 2 was a 51-electron species, which readily converted to the known 49-electron cluster [Se(2)Mn(3)(CO)(9)](2-) upon heating and bubbling with CO. Magnetic studies of the even-electron cluster, [Et(4)N](2)[Se(2)Cr(3)(CO)(10)], and the odd-electron species, [Et(4)N](2)[2] and [PPN](2)[Se(2)Mn(3)(CO)(9)], were determined by the SQUID measurement to have 2, 3, and 1 unpaired electrons, respectively. In addition, the nature and formation of complexes 1 and 2 are discussed, and the magnetic properties and electrochemistry of [Se(2)Cr(3)(CO)(10)](2-), 2, and [Se(2)Mn(3)(CO)(9)](2-) were further studied and elucidated by molecular orbital calculations at the PW91 level of density functional theory.
New Journal of Chemistry | 2011
Chia Yeh Miu; Hsin Hung Chi; Szu Wei Chen; Jiann Jang Cherng; Miao Hsing Hsu; Yu Xin Huang; Minghuey Shieh
When the μ3-sulfido triiron cluster [SFe3(CO)9]2− was treated with BrCH2C(O)OCH3 in MeCN, the ester-functionalized complex [SFe3(CO)9(CH2C(O)OCH3)]− (1) was obtained. Cluster 1 displays a SFe3 tetrahedral core with one of the Fe atoms bonded to an ester ligand CH2C(O)OCH3. In contrast, when [SFe3(CO)9]2− was treated with dihaloalkanes X(CH2)nX′ (X = Cl, X′ = Br, n = 3; X = X′ = I, n = 4) in MeCN, the sulfur-alkylated complexes [X(CH2)nSFe3(CO)9]− (X = Cl, n = 3, 2; X = I, n = 4, 3) were formed, respectively. Clusters 2 and 3 each exhibits a SFe3 tetrahedral core with the sulfur atom attached to the halide-functionalized alkyl group. Furthermore, the Hg-bridged di-SFe3 complex [{SFe3(CO)9}2(μ4-Hg)]2− (4) was isolated from the reaction of [SFe3(CO)9]2− with 2 equiv. of Hg(OAc)2 in acetone. However, when [SFe3(CO)9]2− was treated with HgI2 under similar conditions, the HgI-bridged cluster [SFe3(CO)9(μ-HgI)]− (5) was produced. In addition, complex 4 could be transformed into complex 3 upon treatment with I(CH2)4I in MeCN. Conversely, complex 3 could be reconverted into 4 in the presence of Hg(OAc)2 in an acetone solution. Clusters 1–5 were fully characterized by spectroscopic methods and single-crystal X-ray analysis. In particular, the nature and selective formation as well as electrochemistry of complexes 1–5, which resulted from the different reactive sites (Fevs. S atom) of [SFe3(CO)9]2−, were also examined and compared systematically by molecular orbital calculations at the B3LYP level of the density functional theory.
Inorganic Chemistry | 2011
Minghuey Shieh; Chia Yeh Miu; Kuo Chih Huang; Chung Feng Lee; Bao Gun Chen
When trigonal-bipyramidal clusters, [PPN][E(2)Mn(3)(CO)(9)] (E = S, Se), were treated with Cr(CO)(6) and PPNCl in a molar ratio of 1:1:2 or 1:2:2 in 4 M KOH/MeCN/MeOH solutions, mono-Cr(CO)(5)-incorporated HE(2)Mn(3)-complexes [PPN](2)[HE(2)Mn(3)Cr(CO)(14)] (E = S, [PPN](2)[1a]; Se, [PPN](2)[1b]), respectively, were formed. X-ray crystallographic analysis showed that 1a and 1b were isostructural and each displayed an E(2)Mn(3) square-pyramidal core with one of the two basal E atoms externally coordinated with one Cr(CO)(5) group and one Mn-Mn bond bridged by one hydrogen atom. However, when the TMBA(+) salts for [E(2)Mn(3)(CO)(9)](-) were mixed with Cr(CO)(6) in a molar ratio of 1:1 in 4 M KOH/MeOH solutions and refluxed at 60 °C, mono-Cr(CO)(3)-incorporated E(2)Mn(3)Cr octahedral clusters [TMBA](3)[E(2)Mn(3)Cr(CO)(12)] (E = S, [TMBA](3)[2a]; Se, [TMBA](3)[2b]), respectively, were obtained. Clusters 2a and 2b were isostructural, and each consisted of an octahedral E(2)Mn(3)Cr core, in which each Mn-Mn or Mn-Cr bond of the Mn(3)Cr plane was semibridged by one carbonyl ligand. Clusters 1a and 1b (with [TMBA] salts) underwent metal core closure to form octahedral clusters 2a and 2b upon treatment with KOH/MeOH at 60 °C. In addition, 1a and 1b were found to undergo cluster expansion to form di-Cr(CO)(5)-incorporated HE(2)Mn(3)-clusters [HE(2)Mn(3)Cr(2)(CO)(19)](2-) (E = S, 3a; Se, 3b), respectively, upon the addition of 1 or 2 equiv of Cr(CO)(6) heated in refluxing CH(2)Cl(2). Clusters 3a and 3b were structurally related to clusters 1a and 1b, but with the other bare E atom (E = S, 3a; Se, 3b) further externally coordinated with one Cr(CO)(5) group. The nature, cluster transformation, and electrochemical properties of the mixed manganese-chromium carbonyl sulfides and selenides were systematically discussed in terms of the chalcogen elements, the introduced chromium carbonyl group, and the metal skeleton with the aid of molecular calculations at the BP86 level of the density functional theory.
Chemistry: A European Journal | 2017
Minghuey Shieh; Chia Chi Yu; Chia Yeh Miu; Chang Hung Kung; Chung Yi Huang; Yu Hsin Liu; Hsiang Lin Liu; Chih Chiang Shen
A series of semiconducting cluster-incorporated Cu-based coordination polymers, namely, 1D zigzag polymers [{TeFe3 (CO)9 Cu2 }(L)]n (L=1,2-bis(4-pyridyl)ethane (bpea), 1; L=1,2-bis(4-pyridyl)ethylene (bpee), 5), 2D honeycomb-like polymers [{TeFe3 (CO)9 Cu}Cu(L)2.5 ]n (L=bpea, 2; L=bpee, 6), and 2D wave-like cation-anion polymer [{Cu2 (L)4 }({TeFe3 (CO)9 Cu}2 (L))]n (L=1,3-bis(4-pyridyl)propane (bpp), 4), as well as the macrocycle [{TeFe3 (CO)9 Cu2 }2 (bpp)2 ] (3) have been quantitatively synthesized via the liquid-assisted grinding from the pre-designed cluster [TeFe3 (CO)9 Cu2 (MeCN)2 ] with conjugated or conjugation-interrupted dipyridyl linkers. Notably, the most conjugation-interrupted bpp-bridged polymer 4 exhibited extraordinary semiconducting characteristics with an ultra-narrow bandgap of 1.43 eV and a DC conductivity of 1.5×10-2 Ω-1 cm-1 , which violates our knowledge, mainly attributed to the through-space electron transport via non-classical C-H⋅⋅⋅O(carbonyl) hydrogen bonds and aromatic C-H⋅⋅⋅π interactions. The incorporated Te-Fe-CO anions can not only provide numerous possibilities for secondary interactions within these Cu-based polymers but also serve as a redox-active coordination ligand to promote their conductivities. The intriguing structure-property relationships were studied by X-ray and DFT analyses and further demonstrated by significant change in the oxidation state of Cu atoms by XPS and Cu K-edge XANES.
Coordination Chemistry Reviews | 2012
Minghuey Shieh; Chia Yeh Miu; Yen Yi Chu; Chien Nan Lin
Journal of the American Chemical Society | 2008
Minghuey Shieh; Chia Hua Ho; Wen Shyan Sheu; Bo Gaun Chen; Yen Yi Chu; Chia Yeh Miu; H. L. Liu; Chih Chiang Shen
Chemistry: A European Journal | 2007
Minghuey Shieh; Miao Hsing Hsu; Wen Shyan Sheu; Li Fing Jang; Shu Fen Lin; Yen Yi Chu; Chia Yeh Miu; Yun Wen Lai; Hsiang Lin Liu; Jim Long Her
Dalton Transactions | 2010
Minghuey Shieh; Yen Yi Chu; Chia Yeh Miu; Pei Fan Wu; Tsau Ming Zeng
Journal of Organometallic Chemistry | 2006
Miao Hsing Hsu; Chia Yeh Miu; Yi Chun Lin; Minghuey Shieh