Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiahsin Lin is active.

Publication


Featured researches published by Chiahsin Lin.


Theriogenology | 2010

Use of an adenosine triphosphate assay, and simultaneous staining with fluorescein diacetate and propidium iodide, to evaluate the effects of cryoprotectants on hard coral (Echinopora spp.) oocytes

Sujune Tsai; Emma Spikings; F.W. Kuo; N.C. Lin; Chiahsin Lin

The objective was to examine the effects of cryoprotectants on oocytes of hard corals (Echinopora spp.) to obtain basic knowledge for cryopreservation procedures. Oocytes were exposed to various concentrations of cryoprotectants (0.25 to 5.0M) for 20 min at room temperature (25 degrees C). Two tests were used to assess ovarian follicle viability: fluorescein diacetate (FDA)+propidium iodide (PI) staining, and adenosine triphosphate (ATP) assay. Both FDA+PI staining and ATP assay indicated that cryoprotectant toxicity to oocytes increased in the order methanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), and ethylene glycol (EG). The no observed effect concentrations for Echinopora spp. oocytes were 1.0, 0.5, 0.25, and 0.25 M for methanol, DMSO, PG, and EG, respectively, when assessed with FDA+PI. The ATP assay was more sensitive than FDA+PI staining (P<0.05). Oocyte viability after 1.0M methanol, DMSO, EG, or PG treatment for 20 min at room temperature assessed with FDA+PI tests and ATP assay were 88.9+/-3.1% and 72.2+/-4.4%, 66.2+/-5.0% and 23.2+/-4.9%, 58.9+/-5.4% and 1.1+/-0.7%, and 49.1+/-5.1% and 0.9+/-0.5%, respectively. We inferred that the ATP assay was a valuable measure of cellular injury after cryoprotectant incubation. The results of this study provided a basis for development of protocols to cryopreserve coral oocytes.


PLOS ONE | 2012

Lipid Content and Composition during the Oocyte Development of Two Gorgonian Coral Species in Relation to Low Temperature Preservation

Chiahsin Lin; Li-Hsueh Wang; Tung-Yung Fan; Fu-Wen Kuo

Our previous studies have suggested that chilling sensitivity of coral oocytes may relate to their relatively high lipid intracellular content and lipid composition. The distribution of lipids during the oocyte development was determined here for the first time in two gorgonian species (Junceella juncea and Junceella fragilis). The main lipid classes in the two gorgonian oocytes were total lipid, wax ester, triacylglycerol, total fatty acid, phosphatidylethanolamine and phosphatidylcholine. The results indicated that early stage oocytes of J. juncea and J. fragilis were found to have increased lipid content than late stage oocytes. The content of wax ester was significantly higher in the early stage oocytes of two gorgonian corals (51.0±2.5 and 41.7±2.9 µg/mm3/oocyte) than those of late stage oocytes (24.0±1.4 and 30.4±1.2 µg/mm3/oocyte, respectively). A substantial amount of phosphatidylethanolamine and total fatty acid was detected at each stage of oocyte development in two gorgonian ranges from 107 to 42 µg/mm3/oocyte and 106 to 48 µg/mm3/oocyte, whilst low levels of phosphatidylcholine were found in two gorgonian oocytes. The levels of total lipid in the late stage oocytes of J. juncea were significantly higher than those of J. fragilis. The observed differences may partially be related to different habitat preferences as higher lipid levels in J. juncea, a deeper-water coral species exposed to lower temperature seawater, might relate to adjustments of cell membranes in order to increase membrane fluidity.


PLOS ONE | 2013

Lipid Content and Composition of Oocytes from Five Coral Species: Potential Implications for Future Cryopreservation Efforts

Chiahsin Lin; Li-Hsueh Wang; Pei-Jie Meng; Chii-Shiarng Chen; Sujune Tsai

Given the previously documented importance of lipid concentration and composition in the successful cryopreservation of gorgonian corals, these parameters were assessed in oocytes of five species of scleractinian coral; Platygyra daedalea, Echinopora gemmacea, Echinophyllia aspera, Oxypora lacera and Astreopora expansa. Wax esters, phosphatidylethanolamine, phosphatidylcholine, and fatty acids were all measured at detectable levels, and the latter were produced at significantly elevated quantities in E. gemmacea, E. aspera, and O. lacera. On the other hand, phosphatidylethanolamine, phosphatidylcholine, and wax ester were found at significantly higher concentrations in A. expansa oocytes. Triacylglycerol was not present in any species. Interestingly, the total lipid content of oocytes from all five scleractinians was significantly lower than that of oocytes of two gorgonian species, Junceella juncea and Junceella fragilis. As higher total lipid concentrations may be correlated with greater degrees of cellular membrane fluidity at lower temperatures, it stands to reason that gorgonian coral oocytes may be more likely to survive the cryopreservation process than oocytes of scleractinian corals.


PLOS ONE | 2015

Development of Cryopreservation Techniques for Gorgonian (Junceella juncea) Oocytes through Vitrification.

Sujune Tsai; Wish Yen; Suchana Chavanich; Voranop Viyakarn; Chiahsin Lin

Gorgonian corals are slowly declining due to human interaction and environmental impacts. Cryopreservation of gorgonian corals is an ex-situ method of conservation, ensuring future reproduction. The present study assessed the vitrification properties of cryoprotectant (CPT) mixtures using the cryotop, cryoloop and open pulled straw (OPS) cryopereservation methods prior to experimentation on gorgonian (Junceella juncea) oocytes. Investigations of the equilibration and vitrification solutions’ (ES and VS) effect on oocytes throughout different incubation periods were conducted. The cryotop method was found to be the most successful in ensuring vitrification. The most favourable VS was composed of propylene glycol (PG), ethylene glycol (EG) and methanol with concentrations of 3.5M, 1.5M and 2M respectively. Experiments were performed using the cryotop method to cryopreserve Junceella juncea oocytes using VS2, the solution had the least impact on oocytes at 5°C rather than at 26°C. The success of the vitrification procedures was determined by adenosine triphosphate (ATP) levels in cooled-thaw oocytes and the highest viability obtained from the present study was 76.6 ± 6.2%. This study provides information regarding gorgonian corals’ tolerance and viability throughout vitrification to further advance the vitrification protocol on whip corals.


PLOS ONE | 2014

Membrane Lipid Phase Transition Behavior of Oocytes from Three Gorgonian Corals in Relation to Chilling Injury

Chiahsin Lin; Fu-Wen Kuo; Suchana Chavanich; Voranop Viyakarn

The lipid phase transition (LPT) from the fluid liquid crystalline phase to the more rigid gel structure phase that occurs upon exposure to low temperatures can affect physical structure and function of cellular membranes. This study set out to investigate the membrane phase behavior of oocytes of three gorgonian corals; Junceela fragilis, J. juncea and Ellisella robusta,at different developmental stages after exposure to reduced temperatures. Oocytes were chilled to 5°C for 48, 96 or 144 h, and the LPT temperature (LPTT) was determined with Fourier Transform Infrared (FTIR) spectroscopy. The J. fragilis oocytes had a higher LPTT (∼23.0–23.7°C) than those of J. juncea and E. robusta oocytes (approximately 18.3–20.3°C). Upon chilling for 96 h at 5°C, the LPTTs of J. juncea and E. robusta oocytes in the early (18.0±1.0 and 18.3±0.6°C, respectively) and late (17.3±0.6 and 17.7±1.2°C, respectively) stages were significantly lower than those of J. fragilis oocytes (20.3±2.1 and 19.3±1.5°C for the early and late stages, respectively). The LPTTs of early stage gorgonian oocytes was significantly lower than those of late stage oocytes. These results suggest that the LPT of three gorgonian oocytes at different developmental stages may have been influenced by the phospholipid composition of their plasma membranes, which could have implications for their low temperature resistance.


Scientific Reports | 2016

Cryopreservation of the gorgonian endosymbiont Symbiodinium

Gabriella Chong; Sujune Tsai; Li-Hsueh Wang; Chih-Yang Huang; Chiahsin Lin

The study focused on finding a suitable cryoprotectant (CPA) and an optimum freezing protocol for the cryopreservation of the endosymbiotic dinoflagellates (Symbiodinium, clade G) of Junceella fragilis wherein the success of experiments is crucial to both scientific and ecology studies. A two-step freezing technique was developed. The viability of the thawed dinoflagellates was assayed using the adenosine triphosphate (ATP) bioassay for the first time and was further confirmed through the culturing of dinoflagellates in vitro. The results suggested that 30 min was the most suitable holding time for the dinoflagellates, and the samples produced highest viability when suspended at 5 cm from the surface of LN2. Results also showed that 1 M methanol with 0.4 M sucrose was the most effective CPA, yielding the highest viability (56.93%). Although cell densities of both cryopreserved and control group suffered an initial decline of culture, the cell densities were maintained throughout the remaining duration. In the present study, the cryopreservation of clade G endosymbiont algae was studied for the first time and the method described here could be applied for future studies on symbiotic algae cryopreservation.


Tissue & Cell | 2014

Ultrastructural observations of the early and late stages of gorgonian coral (Junceella juncea) oocytes.

Sujune Tsai; Yating Jhuang; Emma Spikings; Ping-Jyun Sung; Chiahsin Lin

The developmental oogenesis of gorgonian coral was investigated at the histological level. The objective of this study was to examine and improve the understanding of Junceella juncea oogenesis using ultrastructural methods, such as histological sectioning and transmission electron microscopy. At least three types of yolk materials were observed in this study: yolk body, lipid granules and cortical alveoli. Some of the complex yolk materials were encompassed by concentric or arched layers of smooth and rough endoplasmic reticulum and the Golgi complex in early stage oocytes. Different types of vesicles were found in both early and late stage oocytes and some granules could be seen inside the empty vesicles. This may be a possible method for elaborating complex yolk materials. Homogeneous yolks from different types of inclusions were abundant and the autosynthesis of yolk may be a major mechanism in J. juncea oocytes. This is the first report of the ultrastructural observation of oogenesis in gorgonian coral species using transmission electron microscopy. Our study obtained relatively detailed information at the ultrastructural level, and it provides an overview of the oocyte ultrastucture of the gorgonian coral J. juncea.


Tissue & Cell | 2016

Ultrastructural observation of oocytes in six types of stony corals

Sujune Tsai; Wei-Chieh Chang; Suchana Chavanich; Voranop Viyakarn; Chiahsin Lin

In this study, the ultrastructure of the oocytes of 6 types of scleractinian corals was observed by transmission electron microscopy (TEM). Moreover, histological and ultrastructural analyses were performed to improve our understanding of the organelles involved in coral oocyte formation. In all 6 stony coral species, the microvilli were tubular and directly grew from the surface of the oocyte membrane; yolk bodies, lipid granules, and cortical alveoli accounted for most of the volume inside the oocytes, suggesting that they are associated with energy storage and buoyancy. Clear differences were observed in the size of yolk bodies and lipid granules in the oocytes of the 6 stony coral species, which occupied approximately 55%-80% of the inner space of the oocytes. Galaxea fascicularis exhibited the largest lipid granule volume, but the oocytes contained only an average number of 12.45 lipid granules per unit area. Only Montipora incrassata oocytes contained symbiotic algae. The smallest size and proportion of lipid granules in M. incrassata oocytes may be attributed to the presence of symbiotic algae and large yolk bodies, which may help oocytes produce energy and function as a nutritional source. This study is crucial for improving the understanding of the basic biology of coral reproduction, and the ensuing datasets is critical for conservation-oriented studies seeking to cryopreserve corals during these times of dramatic global climate change.


Ocean Science Journal | 2015

Effects of Temperature and Salinity on Survival Rate of Cultured Corals and Photosynthetic Efficiency of Zooxanthellae in Coral Tissues

Pataporn Kuanui; Suchana Chavanich; Voranop Viyakarn; Makoto Omori; Chiahsin Lin

This study investigated the effects of temperature and salinity on growth, survival, and photosynthetic efficiency of three coral species, namely, Pocillopora damicornis, Acropora millepora and Platygyra sinensis of different ages (6 and 18 months old). The experimental corals were cultivated via sexual propagation. Colonies were exposed to 5 different temperatures (18, 23, 28, 33, and 38°C) and 5 different salinities (22, 27, 32, 37, and 42 psu). Results showed that temperature significantly affected photosynthetic efficiency (Fv/Fm) (p < 0.05) compared to salinity. The maximum quantum yield of corals decreased ranging from 5% to 100% when these corals were exposed to different temperatures and salinities. Temperature also significantly affected coral growth and survival. However, corals exposed to changes in salinity showed higher survivorship than those exposed to changes in temperature. Results in this study also showed that corals of different ages and of different species did not display the same physiological responses to changes in environmental conditions. Thus, the ability of corals to tolerate salinity and temperature stresses depends on several factors.


Mitochondrial DNA | 2015

Impacts of low temperature preservation on mitochondrial DNA copy number in oocytes of the hard coral Echinopora sp.

Sujune Tsai; Preeyanuch Thongpooe; Fu-Wen Kuo; Chiahsin Lin

Abstract Given the current threats to coral reefs worldwide, there is an urgent need to develop protocols for the cryopreservation of reef-building corals. However, chilling may alter coral mitochondrial distribution and membrane potential, resulting in reduced ATP production. The aim of this study was to investigate the impacts of chilling on mitochondrial DNA copy number (CN) in oocytes of the hard coral Echinopora sp. Oocytes were exposed to 0.5 M, 1 M or 2 M methanol at 5, 0 or −5 °C for 2, 4, 8 and 16 h. When oocytes were chilled with no cryoprotectant (CPT) or 1 M methanol at 5 or 0 °C, the mtDNA CNs initially increased at hour 2 of incubation, although it decreased significantly over the 16 h of incubation in chilled oocytes at −5 °C. The mtDNA CN increased and picked in 0.5 M methanol at 5 °C and 0 °C at hour 8 of incubation in chilled oocytes indicating that the high mtDNA CN of these oocytes is probably responsible for withstanding high chilling sensitivity. We currently propose that 0.5 M methanol is the optimal CPT for oocytes of Echinopora sp., and potentially other reef corals.

Collaboration


Dive into the Chiahsin Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriella Chong

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar

Li-Hsueh Wang

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Spikings

University of Bedfordshire

View shared research outputs
Top Co-Authors

Avatar

Pei-Jie Meng

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar

Chi-Yang Huang

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Chii-Shiarng Chen

National Dong Hwa University

View shared research outputs
Top Co-Authors

Avatar

Jiann-Chu Chen

National Taiwan Ocean University

View shared research outputs
Researchain Logo
Decentralizing Knowledge