Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Barbieri is active.

Publication


Featured researches published by Chiara Barbieri.


Nature Communications | 2012

The genetic prehistory of southern Africa

Joseph K. Pickrell; Nick Patterson; Chiara Barbieri; Falko Berthold; Linda Gerlach; Tom Güldemann; Blesswell Kure; Sununguko W. Mpoloka; Hirosi Nakagawa; Christfried Naumann; Mark Lipson; Po-Ru Loh; Joseph Lachance; Joanna L. Mountain; Carlos Bustamante; Bonnie Berger; Sarah A. Tishkoff; Brenna M. Henn; Mark Stoneking; David Reich; Brigitte Pakendorf

Southern and eastern African populations that speak non-Bantu languages with click consonants are known to harbour some of the most ancient genetic lineages in humans, but their relationships are poorly understood. Here, we report data from 23 populations analysed at over half a million single-nucleotide polymorphisms, using a genome-wide array designed for studying human history. The southern African Khoisan fall into two genetic groups, loosely corresponding to the northwestern and southeastern Kalahari, which we show separated within the last 30,000 years. We find that all individuals derive at least a few percent of their genomes from admixture with non-Khoisan populations that began ∼1,200 years ago. In addition, the East African Hadza and Sandawe derive a fraction of their ancestry from admixture with a population related to the Khoisan, supporting the hypothesis of an ancient link between southern and eastern Africa.


Molecular Biology and Evolution | 2011

Y-chromosomal variation in Sub-Saharan Africa: insights into the history of Niger-Congo groups

Cesare de Filippo; Chiara Barbieri; Mark Whitten; Sununguko W. Mpoloka; Ellen Dröfn Gunnarsdóttir; Koen Bostoen; Terry Nyambe; Klaus Beyer; Henning Schreiber; Peter de Knijff; Donata Luiselli; Mark Stoneking; Brigitte Pakendorf

Technological and cultural innovations as well as climate changes are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ∼ 10,000 years ago (ya). The expansion of Bantu languages (a family within the Niger-Congo phylum) ∼ 5,000 ya represents a major event in the past demography of the continent. Many previous studies on Y chromosomal variation in Africa associated the Bantu expansion with haplogroup E1b1a (and sometimes its sublineage E1b1a7). However, the distribution of these two lineages extends far beyond the area occupied nowadays by Bantu-speaking people, raising questions on the actual genetic structure behind this expansion. To address these issues, we directly genotyped 31 biallelic markers and 12 microsatellites on the Y chromosome in 1,195 individuals of African ancestry focusing on areas that were previously poorly characterized (Botswana, Burkina Faso, Democratic Republic of Congo, and Zambia). With the inclusion of published data, we analyzed 2,736 individuals from 26 groups representing all linguistic phyla and covering a large portion of sub-Saharan Africa. Within the Niger-Congo phylum, we ascertain for the first time differences in haplogroup composition between Bantu and non-Bantu groups via two markers (U174 and U175) on the background of haplogroup E1b1a (and E1b1a7), which were directly genotyped in our samples and for which genotypes were inferred from published data using linear discriminant analysis on short tandem repeat (STR) haplotypes. No reduction in STR diversity levels was found across the Bantu groups, suggesting the absence of serial founder effects. In addition, the homogeneity of haplogroup composition and pattern of haplotype sharing between Western and Eastern Bantu groups suggests that their expansion throughout sub-Saharan Africa reflects a rapid spread followed by backward and forward migrations. Overall, we found that linguistic affiliations played a notable role in shaping sub-Saharan African Y chromosomal diversity, although the impact of geography is clearly discernible.


Nature | 2016

A genomic history of Aboriginal Australia

Anna-Sapfo Malaspinas; Michael C. Westaway; Craig Muller; Vitor C. Sousa; Oscar Lao; Isabel Alves; Anders Bergström; Georgios Athanasiadis; Jade Y. Cheng; Jacob E. Crawford; Tim Hermanus Heupink; Enrico Macholdt; Stephan Peischl; Simon Rasmussen; Stephan Schiffels; Sankar Subramanian; Joanne L. Wright; Anders Albrechtsen; Chiara Barbieri; Isabelle Dupanloup; Anders Eriksson; Ashot Margaryan; Ida Moltke; Irina Pugach; Thorfinn Sand Korneliussen; Ivan P. Levkivskyi; J. Víctor Moreno-Mayar; Shengyu Ni; Fernando Racimo; Martin Sikora

The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama–Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25–40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10–32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama–Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51–72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.


Current Biology | 2014

Tracing Pastoralist Migrations to Southern Africa with Lactase Persistence Alleles

Enrico Macholdt; Vera Lede; Chiara Barbieri; Sununguko W. Mpoloka; Hua Chen; Montgomery Slatkin; Brigitte Pakendorf; Mark Stoneking

Although southern African Khoisan populations are often assumed to have remained largely isolated during prehistory, there is growing evidence for a migration of pastoralists from eastern Africa some 2,000 years ago, prior to the arrival of Bantu-speaking populations in southern Africa. Eastern Africa harbors distinctive lactase persistence (LP) alleles, and therefore LP alleles in southern African populations may be derived from this eastern African pastoralist migration. We sequenced the lactase enhancer region in 457 individuals from 18 Khoisan and seven Bantu-speaking groups from Botswana, Namibia, and Zambia and additionally genotyped four short tandem repeat (STR) loci that flank the lactase enhancer region. We found nine single-nucleotide polymorphisms, of which the most frequent is -14010(∗)C, which was previously found to be associated with LP in Kenya and Tanzania and to exhibit a strong signal of positive selection. This allele occurs in significantly higher frequency in pastoralist groups and in Khoe-speaking groups in our study, supporting the hypothesis of a migration of eastern African pastoralists that was primarily associated with Khoe speakers. Moreover, we find a signal of ongoing positive selection in all three pastoralist groups in our study, as well as (surprisingly) in two foraging groups.


American Journal of Physical Anthropology | 2014

Unraveling the Complex Maternal History of Southern African Khoisan Populations

Chiara Barbieri; Tom Güldemann; Christfried Naumann; Linda Gerlach; Falko Berthold; Hirosi Nakagawa; Sununguko W. Mpoloka; Mark Stoneking; Brigitte Pakendorf

The Khoisan populations of southern Africa are known to harbor some of the deepest-rooting lineages of human mtDNA; however, their relationships are as yet poorly understood. Here, we report the results of analyses of complete mtDNA genome sequences from nearly 700 individuals representing 26 populations of southern Africa who speak diverse Khoisan and Bantu languages. Our data reveal a multilayered history of the indigenous populations of southern Africa, who are likely to be the result of admixture of different genetic substrates, such as resident forager populations and pre-Bantu pastoralists from East Africa. We find high levels of genetic differentiation of the Khoisan populations, which can be explained by the effect of drift together with a partial uxorilocal/multilocal residence pattern. Furthermore, there is evidence of extensive contact, not only between geographically proximate groups, but also across wider areas. The results of this contact, which may have played a role in the diffusion of common cultural and linguistic features, are especially evident in the Khoisan populations of the central Kalahari.


American Journal of Human Genetics | 2013

Ancient Substructure in Early mtDNA Lineages of Southern Africa

Chiara Barbieri; Mário Vicente; Jorge Rocha; Sununguko W. Mpoloka; Mark Stoneking; Brigitte Pakendorf

Among the deepest-rooting clades in the human mitochondrial DNA (mtDNA) phylogeny are the haplogroups defined as L0d and L0k, which are found primarily in southern Africa. These lineages are typically present at high frequency in the so-called Khoisan populations of hunter-gatherers and herders who speak non-Bantu languages, and the early divergence of these lineages led to the hypothesis of ancient genetic substructure in Africa. Here we update the phylogeny of the basal haplogroups L0d and L0k with 500 full mtDNA genome sequences from 45 southern African Khoisan and Bantu-speaking populations. We find previously unreported subhaplogroups and greatly extend the amount of variation and time-depth of most of the known subhaplogroups. Our major finding is the definition of two ancient sublineages of L0k (L0k1b and L0k2) that are present almost exclusively in Bantu-speaking populations from Zambia; the presence of such relic haplogroups in Bantu speakers is most probably due to contact with ancestral pre-Bantu populations that harbored different lineages than those found in extant Khoisan. We suggest that although these populations went extinct after the immigration of the Bantu-speaking populations, some traces of their haplogroup composition survived through incorporation into the gene pool of the immigrants. Our findings thus provide evidence for deep genetic substructure in southern Africa prior to the Bantu expansion that is not represented in extant Khoisan populations.


European Journal of Human Genetics | 2013

Genetic perspectives on the origin of clicks in Bantu languages from southwestern Zambia

Chiara Barbieri; Anne Butthof; Koen Bostoen; Brigitte Pakendorf

Some Bantu languages spoken in southwestern Zambia and neighboring regions of Botswana, Namibia, and Angola are characterized by the presence of click consonants, whereas their closest linguistic relatives lack such clicks. As clicks are a typical feature not of the Bantu language family, but of Khoisan languages, it is highly probable that the Bantu languages in question borrowed the clicks from Khoisan languages. In this paper, we combine complete mitochondrial genome sequences from a representative sample of populations from the Western Province of Zambia speaking Bantu languages with and without clicks, with fine-scaled analyses of Y-chromosomal single nucleotide polymorphisms and short tandem repeats to investigate the prehistoric contact that led to this borrowing of click consonants. Our results reveal complex population-specific histories, with female-biased admixture from Khoisan-speaking groups associated with the incorporation of click sounds in one Bantu-speaking population, while concomitant levels of potential Khoisan admixture did not result in sound change in another. Furthermore, the lack of sequence sharing between the Bantu-speaking groups from southwestern Zambia investigated here and extant Khoisan populations provides an indication that there must have been genetic substructure in the Khoisan-speaking indigenous groups of southern Africa that did not survive until the present or has been substantially reduced.


American Journal of Human Biology | 2011

Mitochondrial DNA Variability in the Titicaca Basin: Matches and Mismatches with Linguistics and Ethnohistory

Chiara Barbieri; Paul Heggarty; Loredana Castrì; Donata Luiselli; Davide Pettener

The Titicaca basin was the cradle of some of the major complex societies of pre‐Columbian South America and is today home to three surviving native languages: Quechua, Aymara, and Uro. This study seeks to contribute to reconstructing the population prehistory of the region, by providing a first genetic profile of its inhabitants, set also into the wider context of South American genetic background.


PLOS ONE | 2014

Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in Southern Africa

Chiara Barbieri; Mário Vicente; Sandra Oliveira; Koen Bostoen; Jorge Rocha; Mark Stoneking; Brigitte Pakendorf

Bantu speech communities expanded over large parts of sub-Saharan Africa within the last 4000–5000 years, reaching different parts of southern Africa 1200–2000 years ago. The Bantu languages subdivide in several major branches, with languages belonging to the Eastern and Western Bantu branches spreading over large parts of Central, Eastern, and Southern Africa. There is still debate whether this linguistic divide is correlated with a genetic distinction between Eastern and Western Bantu speakers. During their expansion, Bantu speakers would have come into contact with diverse local populations, such as the Khoisan hunter-gatherers and pastoralists of southern Africa, with whom they may have intermarried. In this study, we analyze complete mtDNA genome sequences from over 900 Bantu-speaking individuals from Angola, Zambia, Namibia, and Botswana to investigate the demographic processes at play during the last stages of the Bantu expansion. Our results show that most of these Bantu-speaking populations are genetically very homogenous, with no genetic division between speakers of Eastern and Western Bantu languages. Most of the mtDNA diversity in our dataset is due to different degrees of admixture with autochthonous populations. Only the pastoralist Himba and Herero stand out due to high frequencies of particular L3f and L3d lineages; the latter are also found in the neighboring Damara, who speak a Khoisan language and were foragers and small-stock herders. In contrast, the close cultural and linguistic relatives of the Herero and Himba, the Kuvale, are genetically similar to other Bantu-speakers. Nevertheless, as demonstrated by resampling tests, the genetic divergence of Herero, Himba, and Kuvale is compatible with a common shared ancestry with high levels of drift, while the similarity of the Herero, Himba, and Damara probably reflects admixture, as also suggested by linguistic analyses.


Molecular Biology and Evolution | 2012

Contrasting maternal and paternal histories in the linguistic context of Burkina Faso

Chiara Barbieri; Mark Whitten; Klaus Beyer; Henning Schreiber; Mingkun Li; Brigitte Pakendorf

Burkina Faso is located in the heart of West Africa and is a representative of the local structured patterns of human variability. Here, different cultures and languages are found in a geographic contiguity, as a result of several waves of migration and the succession of long- and short-term empires. However, historical documentation for this area is only partial, focusing predominantly on the recent empires, and linguistic surveys lack the power to fully elucidate the social context of the contact-induced changes. In this paper, we report Y-chromosomal data and complete mtDNA genome sequences for ten populations from Burkina Faso whose languages belong to two very distantly related branches of the Niger-Congo phylum, the Gur and Mande language families. In addition, two further populations, the Mande-speaking Mandenka from Senegal and the Yoruba from Nigeria, were included for regional comparison. We focus on the different historical trajectories undergone by the maternal and paternal lineages. Our results reveal a striking structure in the paternal line, which matches the linguistic affiliation of the ethnolinguistic groups, in contrast to the near-complete homogeneity of the populations in the maternal line. However, while the ancient structure along the linguistic lines is apparent in the Y-chromosomal haplogroup affiliation, this has clearly been overlain by more recent migrations, as shown by significant correlations between the genetic distances based on Y chromosome short tandem repeats and geographic distances between the populations, as well as by the patterns of shared haplotypes. Using the complete mtDNA sequences, we are able to reconstruct population size variation in the past, showing a strong sign of expansion in the concomitance with the Holocene Climate Optimum approximately 12,000-10,000 years ago, which has been suggested as the cause of the spread of the Niger-Congo phylum in the area. However, subsequent climatic fluctuations do not appear to have had an impact on the demography of the inhabitants of West Africa, probably reflecting the adaptive advantages of cultural innovations, such as pastoralism and agriculture.

Collaboration


Dive into the Chiara Barbieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christfried Naumann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge