Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Bernardini is active.

Publication


Featured researches published by Chiara Bernardini.


Veterinary Pathology | 2016

Histological Classification and Immunohistochemical Evaluation of MDM2 and CDK4 Expression in Canine Liposarcoma.

G. Avallone; P. Roccabianca; L. Crippa; Elvio Lepri; B. Brunetti; Chiara Bernardini; Monica Forni; A. Olandese; G. Sarli

Canine liposarcoma is an uncommon soft tissue sarcoma usually arising in the subcutis. While liposarcoma classification in dogs is based solely on histology, in humans it depends on the detection of genetic abnormalities that can lead to specific protein overexpression. This study is an immunohistochemical evaluation of MDM2 and CDK4 expression in canine liposarcoma designed to assess the correlation of these proteins with histologic type, grade, mitotic index and Ki67 labeling index and evaluate their utility in improving tumor classification. Fifty-three liposarcomas were retrospectively collected: 24 were well differentiated liposarcomas (WDL), 16 of which expressed MDM2 and 21 CDK4; 7 were myxoid liposarcomas (ML), 1 of which expressed MDM2 and 5 expressed CDK4; 18 were pleomorphic liposarcomas (PL), all were MDM2 negative and 12 expressed CDK4. Four tumors were morphologically consistent with dedifferentiated liposarcoma (DDL) a subtype described only in humans: 3 expressed MDM2 and 4 expressed CDK4. MDM2 expression correlated with histotype (highly expressed in WDL and DDL) and grade (highly expressed in grade 1 tumors). Histotype correlated with the Ki67 labeling index (lowest in WDL and highest in DDL). A revised classification, considering MDM2 expression, allowed 8 WDL to be reclassified as PL and correlated significantly with mitotic and Ki67 labeling index (both significantly lower in WDL and progressively higher in ML and DDL). These results partially parallel data reported for human liposarcomas, suggesting that WDL and DDL are distinct neoplastic entities characterized by MDM2 expression, which may represent a useful diagnostic and potentially prognostic marker for canine liposarcoma.


American Journal of Physiology-cell Physiology | 2014

Cells derived from porcine aorta tunica media show mesenchymal stromal-like cell properties in in vitro culture.

Andrea Zaniboni; Chiara Bernardini; Marco Alessandri; Chiara Mangano; Augusta Zannoni; Francesca Bianchi; G. Sarli; Laura Calzà; Maria Laura Bacci; Monica Forni

Several studies have already described the presence of specialized niches of precursor cells in vasculature wall, and it has been shown that these populations share several features with mesenchymal stromal cells (MSCs). Considering the relevance of MSCs in the cardiovascular physiopathology and regenerative medicine, and the usefulness of the pig animal model in this field, we reported a new method for MSC-like cell isolation from pig aorta. Filling the vessel with a collagenase solution for 40 min, all endothelial cells were detached and discarded and then collagenase treatment was repeated for 4 h to digest approximately one-third of the tunica media. The ability of our method to select a population of MSC-like cells from tunica media could be ascribed in part to the elimination of contaminant cells from the intimal layer and in part to the overnight culture in the high antibiotic/antimycotic condition and to the starvation step. Aortic-derived cells show an elongated, spindle shape, fibroblast-like morphology, as reported for MSCs, stain positively for CD44, CD56, CD90, and CD105; stain negatively for CD34 and CD45; and express CD73 mRNA. Moreover, these cells show the classical mesenchymal trilineage differentiation potential. Under our in vitro culture conditions, aortic-derived cells share some phenotypical features with pericytes and are able to take part in the formation of network-like structures if cocultured with human umbilical vein endothelial cells. In conclusion, our work reports a simple and highly suitable method for obtaining large numbers of precursor MSC-like cells derived from the porcine aortic wall.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2015

Effect of tributyltin on mammalian endothelial cell integrity

G. Botelho; Chiara Bernardini; Augusta Zannoni; Vittoria Ventrella; Maria Laura Bacci; Monica Forni

Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells.


Research in Veterinary Science | 2014

Cellular stress marker alteration and inflammatory response in pigs fed with an ochratoxin contaminated diet

Chiara Bernardini; Ester Grilli; Johanna Catharina Duvigneau; Augusta Zannoni; Benedetta Tugnoli; Fabio Gentilini; Terenzio Bertuzzi; Silvia Spinozzi; Cecilia Camborata; Maria Laura Bacci; Andrea Piva; Monica Forni

Aim of this study was to characterize the effects of an ochratoxin A (181 ± 34 ng/g) contaminated diet on growth performances, blood parameters, systemic cytokine levels, cell stress markers and reactivity of immune system of weaned pigs. Growth performance was not affected by OTA consumption even if OTA levels increased in plasma, kidney and liver. OTA diminished the protein content in the serum and increased levels of TNF-alpha and IL-10 in plasma. HO-1 mRNA, indicative for cells stress, was decreased in the kidney but increased in the liver. Additionally, whole blood of the animals of the OTA-group showed a decreased capacity to respond with cytokine expression (mRNA and protein) to ex vivo challenge with LPS. In conclusion our findings indicate that chronic ingestion with OTA-contaminated feed, even at low level, is hazardous for the animal and virtually for human health, pig being an excellent model for human.


American Journal of Physiology-cell Physiology | 2015

In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells

Andrea Zaniboni; Chiara Bernardini; Martina Bertocchi; Augusta Zannoni; Francesca Bianchi; G. Avallone; Chiara Mangano; G. Sarli; Laura Calzà; Maria Laura Bacci; Monica Forni

Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes.


Research in Veterinary Science | 2016

X and Y chromosome-bearing spermatozoa are equally able to uptake and internalize exogenous DNA by sperm-mediated gene transfer in swine

Andrea Zaniboni; Marcella Spinaci; Augusta Zannoni; Chiara Bernardini; Monica Forni; Maria Laura Bacci

Since proteomic differences between male X/Y chromosome-bearing gametes have recently been described, a question has been raised: could these differences be responsible for different behavior between X and Y chromosome-bearing spermatozoa during the binding and internalization of exogenous DNA in the swine species? In order to investigate this hypothesis, our group studied the process of the uptake and internalization of exogenous DNA in X and Y chromosome-bearing sperm sub-populations. No significant differences were found between sperm types in both the uptake and internalization of exogenous DNA. The quantity of internalized exogenous DNA was significantly lower than that of the uptaken DNA. In conclusion, our results showed that X and Y chromosomes-bearing spermatozoa have the same binding capacity and internalization of DNA, and the proteomic differences between them do not seem to interfere with these complex processes.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2016

Deleterious effects of tributyltin on porcine vascular stem cells physiology

Chiara Bernardini; Augusta Zannoni; Martina Bertocchi; Francesca Bianchi; Roberta Salaroli; Giuliana Botelho; Maria Laura Bacci; Vittoria Ventrella; Monica Forni

The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology.


Oxidative Medicine and Cellular Longevity | 2018

Anti-Inflammatory Activity of Boswellia serrata Extracts: An In Vitro Study on Porcine Aortic Endothelial Cells

Martina Bertocchi; Gloria Isani; Federica Medici; Giulia Andreani; Irvin Tubon Usca; Paola Roncada; Monica Forni; Chiara Bernardini

This study is aimed at investigating the cytotoxicity, anti-inflammatory, and angiogenic activities of two Boswellia serrata extracts on primary culture of porcine aortic endothelial cells (pAECs). Chemical characterization of a dry extract (extract A) and a hydroenzymatic extract (extract G) of B. serrata was performed by HPLC using pure boswellic acids (BAs) as standard. In cultured pAECs, extract G improved cell viability, following LPS challenge, in a dose-dependent manner and did not show any toxic effect. On the other hand, extract A was toxic at higher doses and restored pAEC viability after LPS challenge only at lower doses. Pure BAs, used at the same concentrations as those determined in the phytoextracts, did not contrast LPS-induced cytotoxicity. Extract A showed proangiogenic properties at the lowest dose, and the same result was observed using pure AKBA at the corresponding concentration, whereas extract G did not show any effect on the migration capacity of endothelial cells. In conclusion, an anti-inflammatory activity of B. serrata extracts on endothelial cells was reported, though cytotoxicity or proliferative stimulation can occur instead of a protective effect, depending on the dose and the formulation.


Research in Veterinary Science | 2017

Proteinase-activated receptor 2 distribution and expression in equine small intestine tracts following herniation through the epiploic foramen

Noemi Romagnoli; Augusta Zannoni; Chiara Bernardini; Thomas Gobbetti; Cristiano Bombardi; Anna Maria Rambaldi; Maria Morini; Francesco Dondi; Riccardo Rinnovati; Carlotta Lambertini; Alessandro Spadari

Proteinase-activated receptor 2 (PAR2) is a G-protein-coupled receptor for trypsin and mast cell tryptase; it is highly expressed at the intestinal level with multiple functions, such as epithelial permeability and intestinal motility. The aim of the study was to evaluate the distribution and expression of proteinase-activated receptor 2 in the small intestine during herniation through epiploic foramen. In this prospective clinical study, eight horses admitted for colic and which underwent exploratory laparotomy were considered. During surgery, the jejunum or the ileum was sampled by enterectomy. Morphological examination (histology, PAR2 immunohistochemistry) and molecular biology analysis (western blot and quantitative polymerase chain reaction) were carried out on the resected intestinal samples. The Marginal Injured Tracts (MITs) and Central Injury Tracts (CITs) were defined as the oral and caudal marginal segments of the resected bowel tract and as the geometric centre of the intestinal ischaemic lesion length, respectively. The PAR2 immunoreactivity was particularly evident in the epithelial cells, with higher immunoreactivity in the MIT rather than in the CIT. Moreover, a different immune localisation was observed in the MITs at the cell membrane level and in the CITs in the cytoplasm. No statistical difference was observed in PAR2 mRNA and protein (44kDa) expression between the MIT and the CIT. The PAR2 protein content in the intestinal tracts which were removed from horses with herniation was lower when compared with the control animals. This study provided data concerning the PAR2 presence and distribution in horses with intestinal herniation through the epiploic foramen.


Theriogenology | 2014

Expression of α-gustducin and α-transducin, G proteins coupled with taste receptors, in boar sperm.

Marcella Spinaci; D. Bucci; Maurizio Mazzoni; Elisa Giaretta; Chiara Bernardini; C. Vallorani; C. Tamanini; Paolo Clavenzani; Giovanna Galeati

Collaboration


Dive into the Chiara Bernardini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Sarli

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge