Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Daraio is active.

Publication


Featured researches published by Chiara Daraio.


Nature Materials | 2011

Bifurcation-based acoustic switching and rectification

Nicholas Boechler; G. Theocharis; Chiara Daraio

Switches and rectification devices are fundamental components used for controlling the flow of energy in numerous applications. Thermal and acoustic rectifiers have been proposed for use in biomedical ultrasound applications, thermal computers, energy- saving and -harvesting materials, and direction-dependent insulating materials. In all these systems the transition between transmission states is smooth with increasing signal amplitudes. This limits their effectiveness as switching and logic devices, and reduces their sensitivity to external conditions as sensors. Here we overcome these limitations by demonstrating a new mechanism for tunable rectification that uses bifurcations and chaos. This mechanism has a sharp transition between states, which can lead to phononic switching and sensing. We present an experimental demonstration of this mechanism, applied in a mechanical energy rectifier operating at variable sonic frequencies. The rectifier is a granular crystal, composed of a statically compressed one-dimensional array of particles in contact, containing a light mass defect near a boundary. As a result of the defect, vibrations at selected frequencies cause bifurcations and a subsequent jump to quasiperiodic and chaotic states with broadband frequency content. We use this combination of frequency filtering and asymmetrically excited bifurcations to obtain rectification ratios greater than 10(4). We envisage this mechanism to enable the design of advanced photonic, thermal and acoustic materials and devices.


Physical Review E | 2006

Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals

Chiara Daraio; V. F. Nesterenko; Eric Herbold; Sungho Jin

One-dimensional strongly nonlinear phononic crystals were assembled from chains of PTFE (polytetrafluoroethylene) and stainless-steel spheres with gauges installed inside the beads. Trains of strongly nonlinear solitary waves were excited by impacts. A significant modification of the signal shape and an increase of solitary wave speed up to two times (at the same magnitude of dynamic contact force) were achieved through a noncontact magnetically induced precompression of the chains. The data for the PTFE based chains are presented for the first time and the data for the stainless-steel beads chains are extended into a range of maximum dynamic forces more than one order of magnitude lower than previously reported. Experimental results agreed reasonably well with the long-wave approximation and numerical calculations based on the Hertz interaction law for particles interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Generation and control of sound bullets with a nonlinear acoustic lens.

Alessandro Spadoni; Chiara Daraio

Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment.


Physical Review Letters | 2010

Discrete Breathers in One-Dimensional Diatomic Granular Crystals

Nicholas Boechler; Georgios Theocharis; Stéphane Job; Panayotis G. Kevrekidis; Mason A. Porter; Chiara Daraio

We report the experimental observation of modulational instability and discrete breathers in a one-dimensional diatomic granular crystal composed of compressed elastic beads that interact via Hertzian contact. We first characterize their effective linear spectrum both theoretically and experimentally. We then illustrate theoretically and numerically the modulational instability of the lower edge of the optical band. This leads to the dynamical formation of long-lived breather structures, whose families of solutions we compute throughout the linear spectral gap. Finally, we experimentally observe the manifestation of the modulational instability and the resulting generation of localized breathing modes with quantitative characteristics that agree with our numerical results.


international conference on computer graphics and interactive techniques | 2015

Microstructures to control elasticity in 3D printing

Christian Schumacher; Bernd Bickel; Jan Rys; Steve Marschner; Chiara Daraio; Markus H. Gross

We propose a method for fabricating deformable objects with spatially varying elasticity using 3D printing. Using a single, relatively stiff printer material, our method designs an assembly of small-scale microstructures that have the effect of a softer material at the object scale, with properties depending on the microstructure used in each part of the object. We build on work in the area of metamaterials, using numerical optimization to design tiled microstructures with desired properties, but with the key difference that our method designs families of related structures that can be interpolated to smoothly vary the material properties over a wide range. To create an object with spatially varying elastic properties, we tile the objects interior with microstructures drawn from these families, generating a different microstructure for each cell using an efficient algorithm to select compatible structures for neighboring cells. We show results computed for both 2D and 3D objects, validating several 2D and 3D printed structures using standard material tests as well as demonstrating various example applications.


Mechanics of Advanced Materials and Structures | 2009

Optimal Design of Composite Granular Protectors

Fernando Fraternali; Mason A. Porter; Chiara Daraio

We employ an evolutionary algorithm to investigate the optimal design of composite protectors using one-dimensional granular chains composed of beads of various sizes, masses, and stiffnesses. We define a fitness function using the maximum force transmitted from the protector to a “wall” that represents the body to be protected and accordingly optimize the topology (arrangement), size, and material of the chain. We obtain optimally randomized granular protectors characterized by high-energy equipartition and the transformation of incident waves into interacting solitary pulses. We consistently observe that the pulses traveling to the wall combine to form an extended (long-wavelength), small-amplitude pulse.


Journal of Applied Physics | 2006

Impact response by a foamlike forest of coiled carbon nanotubes

Chiara Daraio; V. F. Nesterenko; Sungho Jin; Wei Wang; Apparao M. Rao

We studied the dynamic response of a foamlike forest of coiled carbon nanotubes under high strain rate deformation using a simple drop-ball test. The method is based on measuring the dynamic force between the ball and the foam on the substrate during the stages of penetration and restitution. The analysis of the forest’s morphology after impact has shown no trace of plastic deformation and a full recovery of the foamlike layer of coiled carbon nanotubes under various impact velocities. The contact force exhibits a strongly nonlinear dependence on displacement and appears fundamentally different from the response of a forest of straight carbon nanotubes, and from the Hertzian type of plane-sphere interaction. “Brittle” fracture of the foamlike layer is observed after repeated high velocity impacts. Such layers of coiled nanotubes may be used as a strongly nonlinear spring in discrete systems for monitoring their dynamic behavior and as a nanostructure for localized microimpact protection.


Physical Review E | 2008

Highly nonlinear solitary waves in periodic dimer granular chains.

Mason A. Porter; Chiara Daraio; Eric Herbold; Ivan Szelengowicz; Panayotis G. Kevrekidis

We investigate the propagation of highly nonlinear solitary waves in heterogeneous, periodic granular media using experiments, numerical simulations, and theoretical analysis. We examine periodic arrangements of particles in experiments in which stiffer and heavier beads (stainless steel) are alternated with softer and lighter ones (polytetrafluoroethylene beads). We find good agreement between experiments and numerics in a model with Hertzian interactions between adjacent beads, which in turn agrees very well with a theoretical analysis of the model in the long-wavelength regime that we derive for heterogeneous environments and general bead interactions. Our analysis encompasses previously studied examples as special cases and also provides key insights into the influence of the dimer lattice on the properties (width and propagation speed) of the highly nonlinear wave solutions.


Applied Physics Letters | 2004

Highly nonlinear contact interaction and dynamic energy dissipation by forest of carbon nanotubes

Chiara Daraio; V. F. Nesterenko; Sungho Jin

Mechanical response and energy dissipation of an array of carbon nanotubes under high-strain rate deformation was studied using a simple drop-ball test with the measurement of the dynamic force between the ball and forest of nanotubes. This convenient process allows extracting force–displacement curves and evaluating dissipated energy by the nanotubes. The contact force exhibits a strongly nonlinear dependence on displacement being fundamentally different than the Hertz law. The forest of vertically aligned nanotubes may be used as a strongly nonlinear spring in discrete systems for monitoring signal propagation speed, and as a microstructure for localized energy absorption.


Physical Review E | 2011

Interaction of highly nonlinear solitary waves with linear elastic media

Jinkyu Yang; Claudio Silvestro; Devvrath Khatri; Luigi De Nardo; Chiara Daraio

We study the interaction of highly nonlinear solitary waves propagating in granular crystals with an adjacent linear elastic medium. We investigate the effects of interface dynamics on the reflection of incident waves and on the formation of primary and secondary reflected waves. Experimental tests are performed to correlate the linear medium geometry, materials, and mass with the formation and propagation of reflected waves. We compare the experimental results with theoretical analysis based on the long-wavelength approximation and with numerical predictions obtained from discrete particle models. Experimental results are found to be in agreement with theoretical analysis and numerical simulations. This preliminary study establishes the foundation for utilizing reflected solitary waves as novel information carriers in nondestructive evaluation of elastic material systems.

Collaboration


Dive into the Chiara Daraio's collaboration.

Top Co-Authors

Avatar

Sungho Jin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinkyu Yang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eric Herbold

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osama R. Bilal

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge