Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Francavilla is active.

Publication


Featured researches published by Chiara Francavilla.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Immature truncated O-glycophenotype of cancer directly induces oncogenic features

Prakash Radhakrishnan; Sally Dabelsteen; Frey Brus Madsen; Chiara Francavilla; Katharina L. Kopp; Catharina Steentoft; Sergey Y. Vakhrushev; J. Olsen; Lars Kai Hansen; Eric P. Bennett; Anders Woetmann; Guangliang Yin; Longyun Chen; Haiyan Song; Mads Bak; Ryan A. Hlady; Staci L. Peters; Rene Opavsky; Christenze Thode; Klaus Qvortrup; Katrine T. Schjoldager; Henrik Clausen; Michael A. Hollingsworth; Hans H. Wandall

Significance Cancer cells characteristically express proteins with immature O-glycosylation, but how and why cancer cells express immature O-glycans has remained poorly understood. Here, we report that one prevalent mechanism in pancreatic cancer is epigenetic silencing, rather than somatic mutations in a key chaperone, core 1 β3-Gal-T-specific molecular chaperone (COSMC), required for mature elongated O-glycosylation. We also demonstrate, with the use of well-defined cell systems generated by precise gene editing, that the aberrant O-glycophenotype by itself induces oncogenic features with enhanced growth and invasion. Our study suggests that the characteristic aberrant O-glycophenotype is critical for the development and behavior of cancer and further provides support for immunotherapeutic strategies that target aberrant O-glycans. Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 β3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures.


Journal of Proteome Research | 2014

Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.

Tanveer S. Batth; Chiara Francavilla; J. Olsen

Protein phosphorylation is an important post-translational modification (PTM) involved in embryonic development, adult homeostasis, and disease. Over the past decade, several advances have been made in liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based technologies to identify thousands of phosphorylation sites. However, in-depth phosphoproteomics often require off-line enrichment and fractionation techniques. In this study, we provide a detailed analysis of the physicochemical characteristics of phosphopeptides, which have been fractionated by off-line high-pH chromatography (HpH) before subsequent titanium dioxide (TiO2) enrichment and LC-MS/MS analysis. Our results demonstrate that HpH is superior to standard strong-cation exchange (SCX) fractionation in the total number of phosphopeptides detected when analyzing the same number of fractions by identical LC-MS/MS gradients. From 14 HpH fractions, we routinely identified over 30,000 unique phosphopeptide variants, which is more than twice the number of that obtained from SCX fractionation. HpH chromatography displayed an exceptional ability to fractionate singly phosphorylated peptides, with minor benefits for doubly phosphorylated peptides over that with SCX. Further optimizations in the pooling and concatenation strategy increased the total number of multiphosphorylated peptides detected after HpH fractionation. In conclusion, we provide a basic framework and resource for performing in-depth phosphoproteome studies utilizing off-line basic reversed-phased fractionation. Raw data is available at ProteomeXchange (PXD001404).


Science Signaling | 2013

In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-Adrenergic Receptor Signaling

Alicia Lundby; Martin N. Andersen; Annette Buur Steffensen; Heiko Horn; Christian D. Kelstrup; Chiara Francavilla; Lars Juhl Jensen; Nicole Schmitt; Morten B. Thomsen; J. Olsen

Analysis of phosphorylated proteins from the hearts of mice given drugs targeting β-adrenergic receptors may aid in treating heart disease. Getting to the Heart of Signaling Patients with high blood pressure and other heart-related conditions routinely take inhibitors of β-adrenergic receptors (βARs) to prevent cardiac dysfunction. βAR signaling leads to the increased contractility of cardiomyocytes, among other effects; however, the number of downstream targets of βARs is unclear. Lundby et al. treated mice with combinations of specific β1AR and β2AR agonists and antagonists to activate each receptor isoform individually before harvesting the hearts and subjecting them to phosphoproteomics analysis. The authors identified previously uncharacterized peptides and sites phosphorylated in response to β1AR signaling, as well as characterized the activation of a potassium channel important for increasing heart rate. This in vivo approach provides insights into βAR signaling pathways that may help in understanding how heart diseases develop and how they may be treated. β-Blockers are widely used to prevent cardiac arrhythmias and to treat hypertension by inhibiting β-adrenergic receptors (βARs) and thus decreasing contractility and heart rate. βARs initiate phosphorylation-dependent signaling cascades, but only a small number of the target proteins are known. We used quantitative in vivo phosphoproteomics to identify 670 site-specific phosphorylation changes in murine hearts in response to acute treatment with specific βAR agonists. The residues adjacent to the regulated phosphorylation sites exhibited a sequence-specific preference (R-X-X-pS/T), and integrative analysis of sequence motifs and interaction networks suggested that the kinases AMPK (adenosine 5′-monophosphate–activated protein kinase), Akt, and mTOR (mammalian target of rapamycin) mediate βAR signaling, in addition to the well-established pathways mediated by PKA (cyclic adenosine monophosphate–dependent protein kinase) and CaMKII (calcium/calmodulin-dependent protein kinase type II). We found specific regulation of phosphorylation sites on six ion channels and transporters that mediate increased ion fluxes at higher heart rates, and we showed that phosphorylation of one of these, Ser92 of the potassium channel KV7.1, increased current amplitude. Our data set represents a quantitative analysis of phosphorylated proteins regulated in vivo upon stimulation of seven-transmembrane receptors, and our findings reveal previously unknown phosphorylation sites that regulate myocardial contractility, suggesting new potential targets for the treatment of heart disease and hypertension.


Protein Engineering Design & Selection | 2009

Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library.

Ana Monegal; Diletta Ami; Chiara Martinelli; He Huang; Marisa Aliprandi; Paola Capasso; Chiara Francavilla; Giuseppe Ossolengo; Ario de Marco

We describe the rapid isolation of single-domain recombinant antibodies in VHH format from a pre-immune llama library created in our laboratory. Such naïve library has demonstrated to be a versatile tool and enabled the isolation of several different antibodies for any of the six proteins panned in parallel. The binders specific for human fibroblast growth factor receptor 1 (FGFR1) were successively analyzed in more detail and resulted suitable for both western blot and immunofluorescence analyses. Several milligrams per liter of antibodies were purified by affinity chromatography and used for kinetic and thermodynamic characterization. Their K(D) was in the nanomolar range and they apparently bound a FGF receptor 1 domain not overlapping the region recognized by its physiological ligand FGF. Altogether, the collected data indicate that the new library can enable the recovery of binders of high affinity, specificity and functionality in the conventional immunological tests, avoiding the necessity of further maturation steps. Such results confirmed recent reports of high affinity pre-immune IgNARs and supported the choice of using large single-domain recombinant antibody naïve libraries as an alternative to the preparation of immune libraries for selecting monoclonal antibodies, at convenient cost and time conditions.


Journal of Cell Biology | 2009

The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

Chiara Francavilla; Paola Cattaneo; Vladimir Berezin; Elisabeth Bock; Diletta Ami; Ario de Marco; Gerhard Christofori; Ugo Cavallaro

Although FGF-2 causes the FGFR to be internalized and degraded, NCAM gets cells moving by stabilizing the receptor, promoting receptor recycling, and initiating a promigratory signaling cascade.


Journal of Cell Science | 2007

Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor

Chiara Francavilla; Sébastien Loeffler; Daniele Piccini; Angelika Kren; Gerhard Christofori; Ugo Cavallaro

Neural cell adhesion molecule (NCAM) mediates cell-cell adhesion and signaling in the nervous system, yet NCAM is also expressed in non-neural tissues, in which its function has in most parts remained elusive. We have previously reported that NCAM stimulates cell-matrix adhesion and neurite outgrowth by activating fibroblast growth factor receptor (FGFR) signaling. Here, we investigated whether the interplay between NCAM and FGFR has any impact on the response of FGFR to its classical ligands, FGFs. To this end, we employed two fibroblast cell lines, NCAM-negative L cells and NCAM-positive NIH-3T3 cells, in which the expression of NCAM was manipulated by means of transfection or RNAi technologies, respectively. The results demonstrate that NCAM expression reduces FGF-stimulated ERK1/2 activation, cell proliferation and cell-matrix adhesion, in both L and NIH-3T3 cells. Furthermore, our data show that NCAM inhibits the binding of FGF to its high-affinity receptor in a competitive manner, providing the mechanisms for the NCAM-mediated suppression of FGF function. In this context, a small peptide that mimics the binding of NCAM to FGFR was sufficient to block FGF-dependent cell proliferation. These findings point to NCAM as being a major regulator of FGF-FGFR interaction, thus introducing a novel type of control mechanism for FGFR activity and opening new therapeutic perspectives for those diseases characterized by aberrant FGFR function.


Molecular Cell | 2013

Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs

Chiara Francavilla; Kristoffer T.G. Rigbolt; Kristina B. Emdal; Gianni Carraro; Erik Vernet; Dorte B. Bekker-Jensen; Werner Streicher; Mats Wikström; Michael Sundström; Saverio Bellusci; Ugo Cavallaro; Blagoy Blagoev; J. Olsen

The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferation, whereas FGF-10 promotes receptor recycling and cell migration. By combining mass-spectrometry-based quantitative proteomics with fluorescence microscopy and biochemical methods, we find that FGF-10 specifically induces the rapid phosphorylation of tyrosine (Y) 734 on FGFR2b, which leads to PI3K and SH3BP4 recruitment. This complex is crucial for FGFR2b recycling and responses, given that FGF-10 stimulation of either FGFR2b_Y734F mutant- or SH3BP4-depleted cells switches the receptor endocytic route to degradation, resulting in decreased breast cancer cell migration and the inhibition of epithelial branching in mouse lung explants. Altogether, these results identify an intriguing ligand-dependent mechanism for the control of receptor fate and cellular outputs that may explain the pathogenic role of deregulated FGFR2b, thus offering therapeutic opportunities.


Seminars in Cancer Biology | 2009

The functional role of cell adhesion molecules in tumor angiogenesis

Chiara Francavilla; Luigi Maddaluno; Ugo Cavallaro

Cell adhesion molecules (CAMs) are cell surface glycoproteins that mediate the physical interactions between adjacent cells and between cells and the surrounding extracellular matrix. CAMs belong to different protein families, depending on their structural and functional properties. Furthermore, the expression of certain CAMs under physiological conditions is restricted to specific cell types. Besides playing a key homeostatic role in maintaining the architecture of quiescent tissues, CAMs have also to adapt to the microenvironmental changes that occur during certain physiological and pathological processes. This is best exemplified by cancer vascularization, where the expression and function of vascular CAMs are dynamically regulated in response to tissue alterations induced by tumor growth as well as by changes in the surrounding stroma. This enables endothelial cells (ECs) to leave the quiescent state and re-enter the angiogenic cascade. The latter is a multistep process carried out by different types of specialized ECs. This review describes the actual or supposed function of the various CAM subsets in the sequential series of events that underlie vascular changes during tumor angiogenesis. Notably, elucidating the mechanism of action of endothelial CAMs in cancer vasculature is expected to open new therapeutic avenues aimed at interfering with tumor growth and dissemination.


Molecular Systems Biology | 2015

Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation.

Shankha Satpathy; Sebastian A. Wagner; Petra Beli; Rajat Gupta; Trine A Kristiansen; Dessislava Malinova; Chiara Francavilla; Pavel Tolar; Gail A. Bishop; Bruce S. Hostager; Chunaram Choudhary

B‐cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry‐based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor‐proximal signaling components, many of which are co‐regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR‐induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo‐lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC‐mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR‐induced NF‐κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.


Expert Review of Proteomics | 2015

Recent findings and technological advances in phosphoproteomics for cells and tissues

Louise von Stechow; Chiara Francavilla; J. Olsen

Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins – termed phosphoproteomics – strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.

Collaboration


Dive into the Chiara Francavilla's collaboration.

Top Co-Authors

Avatar

J. Olsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Ugo Cavallaro

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blagoy Blagoev

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omid Hekmat

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Diletta Ami

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge