Chiara Geri
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiara Geri.
Molecular Plant-microbe Interactions | 1997
Edi Cecchini; Zhen-Hui Gong; Chiara Geri; Simon N. Covey; Joel J. Milner
Gene VI of cauliflower mosaic virus (CaMV) is an important determinant of symptom expression during infection. We have constructed a series of transgenic Arabidopsis lines that express gene VI protein (P6) from two CaMV isolates (Bari-1 and Cabb B-JI) that cause mild and severe symptoms, respectively, in Arabidopsis, and from a recombinant virus (Baji-31) with a hybrid gene VI that causes very severe symptoms. From 41 transgenic lines analyzed, 17 showed symptom-like phenotypes that ranged from mild vein chlorosis to severe chlorosis and stunting. P6 levels in transgenic lines varied from undetectable in the lowest expressors to levels greater than those in CaMV-infected plants. There was a strong correlation between phenotype severity and the level of P6, and with the gene VI origin in the order, Baji-31 > B-JI > Bari-1. This was similar to symptom severity in Arabidopsis infected with the respective CaMV variant. We also found that transgenic P6 accumulated in inclusion bodies that were similar to those found in infected plants but lacking virions. We conclude that expression of P6, in the absence of virus replication, elicits a subset of the host symptom responses normally observed during infection and that the level, sequence, and possibly the form of P6 are important in potentiating the process.
PLOS ONE | 2012
Andrew J. Love; Chiara Geri; Janet Laird; Craig Carr; Byung-Wook Yun; Gary J. Loake; Yasuomi Tada; Ari Sadanandom; Joel J. Milner
Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants. These results demonstrate that P6 is a new type of pathogenicity effector protein that enhances susceptibility to biotrophic pathogens by suppressing SA- but enhancing JA-signaling responses.
Molecular Plant-microbe Interactions | 2007
Andrew J. Love; Valérie Laval; Chiara Geri; Janet Laird; A. Deri Tomos; Mark A. Hooks; Joel J. Milner
We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility. A cpr5 eds5 double mutant also was resistant, suggesting that resistance in cpr5 may function partially independently of SA. Treatment of cpr5 and cpr5 eds5, but not cpr1, with salicyl-hydroxamic acid, an inhibitor of alternative oxidase, partially restored susceptibility to wild-type levels. Mutants etr1-1, etr1-3, and ein2-1, and two mutants with lesions in ET/JA-mediated defense, eds4 and eds8, also showed reduced virus susceptibility, demonstrating that ET-dependent responses also play a role in susceptibility. We used a green fluorescent protein (GFP)-expressing CaMV recombinant to monitor virus movement. In mutants with reduced susceptibility, cpr1-1, cpr5-2, and etr1-1, CaMV-GFP formed local lesions similar to the wild type, but systemic spread was almost completely absent in cpr1 and cpr5 and was substantially reduced in etr1-1. Thus, mutations with enhanced systemic acquired resistance or compromised ET signaling show diminished long-distance virus movement.
Development Genes and Evolution | 2006
Marco Fambrini; Chiara Durante; Giuliano Cionini; Chiara Geri; Lucia Giorgetti; V. Michelotti; Mariangela Salvini; Claudio Pugliesi
The Helianthus annuusLEAFY COTYLEDON1-LIKE (HaL1L) gene encodes a heme-activated protein 3 subunit of the CCAAT box-binding factor. The phylogenetic analysis indicates that HaL1L is closely related to LEAFY COTYLEDON1 (LEC1)-type of Arabidopsis thaliana. In particular, the peptide results homologous to the LEC1-LIKE gene of A. thaliana, with which it shares a high amino acid sequence identity (56%). HaL1L transcripts are accumulated primarily at an early stage of sunflower embryogenesis. High levels of HaL1L messenger RNA (mRNA) have been detected in the developing embryo proper, suspensor, endosperm, integument, and integumentary tapetum cells, while in unfertilized ovules, HaL1L mRNA was present at rather low levels. In an attempt to examine the involvement of HaL1L on somatic embryogenesis, a somaclonal variant of H. annuus × H. tuberosus (EMB-2) that produces ectopic embryo- and shoot-like structures, arranged in clusters along leaf veins, was used. We found that the epiphyllous proliferation of ectopic embryos on EMB-2 leaves was associated to HaL1L mRNA accumulation. The detection of HaL1L transcripts was evident in somatic embryos at the heart- and early cotyledon-stage. On the contrary, no signal related to HaL1L transcript accumulation was observed in EMB-2 leaves characterized by the presence of shoot-like structures. Together, these results support the conclusion that the transcription of the HaL1L gene is maintained both in zygotic and in somatic embryogenesis. In addition, the ectopic accumulation of HaL1L mRNA in parenchymal cells around the vascular bundles of epiphyllous leaves opens the possibility that HaL1L could also be involved in switching somatic cell fate towards embryogenic competence.
Molecular Plant-microbe Interactions | 1999
Chiara Geri; Edi Cecchini; Maria E. Giannakou; Simon N. Covey; Joel J. Milner
Cauliflower mosaic virus (CaMV) gene VI protein (P6) is an important determinant of symptom expression. Differential display polymerase chain reaction (PCR) was used to identify changes in gene expression in Arabidopsis elicited by a P6 transgene that causes a symptomatic phenotype. We used slot blot hybridization to measure the abundance of mRNAs complementary to 66 candidate PCR products in transgenic, CaMV-infected, and uninfected Arabidopsis plants. CaMV-infected and P6 transgenic plants showed broadly similar changes in abundance of mRNA species. In P6 transgenic plants we detected 18 PCR products that showed unambiguous changes in abundance plus another 15 that showed more limited changes (approximately twofold). CaMV-infected plants showed 17 unambiguous and 13 limited changes. Down-regulated species include those encoding a novel, phenol-like sulfotransferase, and a glycine-rich, RNA-binding protein. Up-regulated species included ones encoding an myb protein, glycine-rich and stress-inducible proteins, and a member of a previously unreported gene family. CaMV infection causes alterations in expression of many Arabidopsis genes. Transgene-mediated expression of P6 mimics virus infection in its effect on host gene expression, providing a potential mechanism for this process.
Plant Molecular Biology | 2004
Chiara Geri; Andrew J. Love; Edi Cecchini; Stuart J. Barrett; Janet Laird; Simon N. Covey; Joel J. Milner
Protein P6 is the main symptom determinant of cauliflower mosaic virus (CaMV), and transgene-mediated expression in Arabidopsis induces a symptom-like phenotype in the absence of infection. Seeds of a P6-transgenic line, A7, were mutagenized by γ-irradiation and M2 seedlings were screened for mutants that suppressed the phenotype of chlorosis and stunting. We identified four mutants that were larger and less chlorotic than the A7 parent but which contained an intact and transcriptionally active transgene. The two mutants with the strongest suppression phenotype, were recessive and allelic. The transgene was eliminated by back-crossing with wild-type Arabidopsis. In progeny lines that were homozygous for the putative suppressor mutation the proportion of plants becoming infected following inoculation with CaMV was 40% that of wild-type, although in plants that did become infected, levels of virus DNA in mutants and wild-type did not differ significantly. Symptoms in the mutants were milder and delayed although this was somewhat dependent on the virus isolate. This phenotype was inherited stably. Both mutant alleles showed a partially ethylene-insensitive phenotype in an ethylene triple response assay. P6-transgenic plants were also almost completely insensitive to ethylene in the triple response assay. We suggest that the chlorosis and stunting in P6-transgenic and CaMV-infected plants are dependent on interactions between P6 and components involved in ethylene signalling, and that the suppressor gene product may function to augment these interactions.
Journal of General Virology | 2013
Janet Laird; Carol McInally; Craig Carr; Sowjanya Doddiah; Gary Yates; Elina Chrysanthou; Ahmed Khattab; Andrew J. Love; Chiara Geri; Ari Sadanandom; Brian O. Smith; Kappei Kobayashi; Joel J. Milner
Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.
Journal of Microbiological Methods | 1998
Neil R. McEwan; Jehan Bakht; Edi Cecchini; Allan Coultart; Chiara Geri; Fiona McDonald; Morag S. McDonald; Nik Norulaini Ab. Rahman; Graham Williamson
Abstract The similarity between random amplified polymorphic DNA (RAPD) profiles generated by nine experimenters is presented. Despite simultaneously using the same pipettes, the same solutions and the same thermocycler, no two RAPD profiles generated identical banding patterns. This result suggests that before using a particular primer, it is essential that all experimenters should obtain a reference profile for their own work, rather than comparing it to one generated by another researcher.
Developmental Genetics | 1989
M. Durante; Edi Cecchini; Lucia Natali; Lorenzo Citti; Chiara Geri; Roberto Parenti
Molecular Plant Pathology | 2002
Edi Cecchini; Chiara Geri; Andrew J. Love; George Coupland; Simon N. Covey; Joel J. Milner