Chiara Giacomelli
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiara Giacomelli.
Scientific Reports | 2015
Simona Daniele; Sabrina Taliani; Eleonora Da Pozzo; Chiara Giacomelli; Barbara Costa; Maria Letizia Trincavelli; Leonardo Rossi; Valeria La Pietra; Elisabetta Barresi; Alfonso Carotenuto; Antonio Limatola; Anna Lamberti; Luciana Marinelli; Ettore Novellino; Federico Da Settimo; Claudia Martini
In the complex scenario of cancer, treatment with compounds targeting multiple cell pathways has been emerging. In Glioblastoma Multiforme (GBM), p53 and Translocator Protein (TSPO), both acting as apoptosis inducers, represent two attractive intracellular targets. On this basis, novel indolylglyoxylyldipeptides, rationally designed to activate TSPO and p53, were synthesized and biologically characterized. The new compounds were able to bind TSPO and to reactivate p53 functionality, through the dissociation from its physiological inhibitor, murine double minute 2 (MDM2). In GBM cells, the new molecules caused Δψm dissipation and inhibition of cell viability. These effects resulted significantly higher with respect to those elicited by the single target reference standards applied alone, and coherent with the synergism resulting from the simultaneous activation of TSPO and p53. Taken together, these results suggest that TSPO/MDM2 dual-target ligands could represent a new attractive multi-modal opportunity for anti-cancer strategy in GBM.
The International Journal of Biochemistry & Cell Biology | 2015
Chiara Giacomelli; Maria Letizia Trincavelli; Cristina Satriano; Örjan Hansson; Diego La Mendola; Enrico Rizzarelli; Claudia Martini
Angiogenin (ANG), a member of the secreted ribonuclease family, is a potent angiogenesis stimulator that interacts with endothelial cells inducing a wide range of responses. Metal ions dyshomeostasis play a fundamental role in the onset of neurodegenerative diseases, in particular copper that is also involved in angiogenesis processes. It is known that vascular pathologies are present in neurodegenerative diseases and Angiogenin is down-regulated in Alzheimer and Parkinson diseases, as well as it has been found as one of the mutated genes in amyotrophic lateral sclerosis (ALS). Copper (II) induces an increase of Angiogenin binding to endothelial cells but, so far, the relationship between copper-ANG and angiogenesis induction remain unclear. Herein, the effects of copper (II) ions on Angiogenin activity and expression were evaluated. The binding of copper was demonstrated to affect the intracellular localization of the protein decreasing its nuclear translocation. Moreover, the ANG-copper (II) system negatively affects the protein-induced angiogenesis, as well as endothelial cells migration. Surprisingly, copper also reveals the ability to modulate the Angiogenin transcription. These results highlight the tight relationship between copper and Angiogenin, pointing out the biological relevance of ANG-copper system in the regulation of endothelial cell function, and revealing a possible new mechanism at the basis of vascular pathologies.
Scientific Reports | 2015
Simona Daniele; Chiara Giacomelli; Elisa Zappelli; Carlotta Granchi; Maria Letizia Trincavelli; Filippo Minutolo; Claudia Martini
Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type.
Biochimica et Biophysica Acta | 2014
Maria Letizia Trincavelli; Chiara Giacomelli; Simona Daniele; Sabrina Taliani; Barbara Cosimelli; Sonia Laneri; Elda Severi; Elisabetta Barresi; Isabella Pugliesi; Giovanni Greco; Ettore Novellino; Federico Da Settimo; Claudia Martini
BACKGROUND Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target. METHODS We evaluated seven 1-benzyl-3-ketoindole derivatives (7-9) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs. RESULTS The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy. CONCLUSIONS A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR. GENERAL SIGNIFICANCE The 1-benzyl-3-ketoindole derivatives 7-9 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.
European Journal of Medicinal Chemistry | 2013
Sabrina Taliani; Maria Letizia Trincavelli; Barbara Cosimelli; Sonia Laneri; Elda Severi; Elisabetta Barresi; Isabella Pugliesi; Simona Daniele; Chiara Giacomelli; Giovanni Greco; Ettore Novellino; Claudia Martini; Federico Da Settimo
We have disclosed a series of 1-benzyl-3-ketoindole derivatives acting as either positive or negative modulators of the human A(2B) adenosine receptor (A(2B) AR) depending on small differences in their side chain. The new compounds were designed taking into account structural similarities between AR antagonists and ligands of the GABA(A)/benzodiazepine receptor. All compounds resulted totally inactive at A(2A) and A₃ ARs and showed small (8a,b) or none (7a,b, 8c and 9a,b) affinity for A₁ AR. When tested on A(2B) AR-transfected CHO cells, 7a,b and 8a acted as positive modulators, whereas 8b,c and 9a,b acted as negative modulators, enhancing or weakening the NECA-induced increase of cAMP levels, respectively. Compounds 7-9 might be regarded as useful biological and pharmacological tools to explore the therapeutic potential of A(2B) AR modulators, while their 3-ketoindole scaffold might be taken as a reference to design new analogs.
Scientific Reports | 2016
Barbara Costa; Eleonora Da Pozzo; Chiara Giacomelli; Elisabetta Barresi; Sabrina Taliani; Federico Da Settimo; Claudia Martini
The pharmacological activation of the cholesterol-binding Translocator Protein (TSPO) leads to an increase of endogenous steroids and neurosteroids determining benefic pleiotropic effects in several pathological conditions, including anxiety disorders. The relatively poor relationship between TSPO ligand binding affinities and steroidogenic efficacies prompted us to investigate the time (Residence Time, RT) that a number of compounds with phenylindolylglyoxylamide structure (PIGAs) spends in contact with the target. Here, given the poor availability of TSPO ligand kinetic parameters, a kinetic radioligand binding assay was set up and validated for RT determination using a theoretical mathematical model successfully applied to other ligand-target systems. TSPO ligand RT was quantified and the obtained results showed a positive correlation between the period for which a drug interacts with TSPO and the compound ability to stimulate steroidogenesis. Specifically, the TSPO ligand RT significantly fitted both with steroidogenic efficacy (Emax) and with area under the dose-response curve, a parameter combining drug potency and efficacy. A positive relation between RT and anxiolytic activity of three compounds was evidenced. In conclusion, RT could be a relevant parameter to predict the steroidogenic efficacy and the in vivo anxiolytic action of new TSPO ligands.
Journal of Medicinal Chemistry | 2015
Elisabetta Barresi; Agostino Bruno; Sabrina Taliani; Sandro Cosconati; Eleonora Da Pozzo; Silvia Salerno; Francesca Simorini; Simona Daniele; Chiara Giacomelli; Anna Maria Marini; Concettina La Motta; Luciana Marinelli; Barbara Cosimelli; Ettore Novellino; Giovanni Greco; Federico Da Settimo; Claudia Martini
As a continuation of our studies on 2-phenylindol-3-ylglyoxylamides as potent and selective translocator protein (TSPO) ligands, two subsets of novel derivatives, featuring hydrophilic group (OH, NH2, COOH) at the para-position of the pendent 2-phenyl ring (8-16) or different 2-aryl moieties, namely, 3-thienyl, p-biphenyl, 2-naphthyl (23-35), were synthesized and biologically evaluated, some of them showing Ki values in the subnanomolar range and the 2-naphthyl group performance being the best. The resulting SARs confirmed the key role played by interactions taking place between ligands and the lipophilic L1 pocket of the TSPO binding site. Docking simulations were performed on the most potent compound of the present series (29) exploiting the recently available 3D structures of TSPO bound to its standard ligand (PK11195). Our theoretical model was fully consistent with SARs of the newly investigated as well of the previously reported 2-phenylindol-3-ylglyoxylamide derivatives.
Biochimica et Biophysica Acta | 2014
Maria Letizia Trincavelli; Simona Daniele; Chiara Giacomelli; Sabrina Taliani; Federico Da Settimo; Barbara Cosimelli; Giovanni Greco; Ettore Novellino; Claudia Martini
The A2B adenosine receptor (A2B AR), activated in response to high levels of endogenous adenosine, is the major AR subtype involved in mesenchymal stem cell (MSC) differentiation to osteoblasts and bone formation. For this reason, targeting of A2B AR with selective allosteric modulators may represent a promising pharmacological approach to the treatment of bone diseases. Herein, we report the characterization of a 3-keto-indole derivative, 2-(1-benzyl-1H-indol-3-yl)-2-oxo-N-phenylacetamide (KI-7), as A2B AR positive allosteric modulator in MSCs, demonstrating that this compound is able to potentiate the effects of either adenosine and synthetic orthosteric A2B AR agonists in mediating osteoblast differentiation in vitro. In detail, we observed that MSC treatment with KI-7 determined an increase in the expression of osteoblast-related genes (Runx2 and osterix) and osteoblast marker proteins (phosphatase alkaline and osteocalcin), associated with a stimulation of osteoblast mineralization. In the early phase of differentiation programme, KI-7 significantly potentiated physiological and A2B AR agonist-mediated down-regulation of IL-6 release. Conversely, during the late stage of differentiation, when most of the cells have an osteoblast phenotype, KI-7 caused a sustained raise in IL-6 levels and an improvement in osteoblast viability. These data suggest that a positive allosteric modulation of A2B AR not only favours MSC commitment to osteoblasts, but also ensures a greater survival of mature osteoblasts. Our study paves the way for a therapeutic use of selective positive allosteric modulators of A2B AR in the control of osteoblast differentiation, bone formation and fracture repair.
Biochemical Pharmacology | 2017
Chiara Giacomelli; Simona Daniele; Claudia Martini
ABSTRACT The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). &bgr;‐Amyloid (A&bgr;) peptide‐containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimers disease. Meanwhile, Parkinsons disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which &agr;‐synuclein (&agr;‐syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric‐related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, &agr;‐syn, tau and A&bgr; have been shown to interact each other or with other “pathological proteins” to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting &agr;‐syn, tau and A&bgr; and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
ACS Chemical Neuroscience | 2017
Simona Daniele; Simona Sestito; Deborah Pietrobono; Chiara Giacomelli; Grazia Chiellini; Danilo Di Maio; Luciana Marinelli; Ettore Novellino; Claudia Martini; Simona Rapposelli
The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.