Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Giorio is active.

Publication


Featured researches published by Chiara Giorio.


Journal of Economic Entomology | 2009

Translocation of Neonicotinoid Insecticides From Coated Seeds to Seedling Guttation Drops: A Novel Way of Intoxication for Bees

Vincenzo Girolami; Luca Mazzon; Andrea Squartini; Nicola Mori; Matteo Marzaro; A. Di Bernardo; M. Greatti; Chiara Giorio; Andrea Tapparo

ABSTRACT The death of honey bees, Apis mellifera L., and the consequent colony collapse disorder causes major losses in agriculture and plant pollination worldwide. The phenomenon showed increasing rates in the past years, although its causes are still awaiting a clear answer. Although neonicotinoid systemic insecticides used for seed coating of agricultural crops were suspected as possible reason, studies so far have not shown the existence of unquestionable sources capable of delivering directly intoxicating doses in the fields. Guttation is a natural plant phenomenon causing the excretion of xylem fluid at leaf margins. Here, we show that leaf guttation drops of all the corn plants germinated from neonicotinoid-coated seeds contained amounts of insecticide constantly higher than 10 mg/1, with maxima up to 100 mg/1 for thiamethoxam and clothianidin, and up to 200 mg/1 for imidacloprid. The concentration of neonicotinoids in guttation drops can be near those of active ingredients commonly applied in field sprays for pest control, or even higher. When bees consume guttation drops, collected from plants grown from neonicotinoid-coated seeds, they encounter death within few minutes.


Environmental Science & Technology | 2012

Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds.

Andrea Tapparo; Daniele Marton; Chiara Giorio; Alessandro Zanella; Lidia Soldà; Matteo Marzaro; Linda Vivan; Vincenzo Girolami

Since seed coating with neonicotinoid insecticides was introduced in the late 1990s, European beekeepers have reported severe colony losses in the period of corn sowing (spring). As a consequence, seed-coating neonicotinoid insecticides that are used worldwide on corn crops have been blamed for honeybee decline. In view of the currently increasing crop production, and also of corn as a renewable energy source, the correct use of these insecticides within sustainable agriculture is a cause of concern. In this paper, a probable--but so far underestimated--route of environmental exposure of honeybees to and intoxication with neonicotinoid insecticides, namely, the atmospheric emission of particulate matter containing the insecticide by drilling machines, has been quantitatively studied. Using optimized analytical procedures, quantitative measurements of both the emitted particulate and the consequent direct contamination of single bees approaching the drilling machine during the foraging activity have been determined. Experimental results show that the environmental release of particles containing neonicotinoids can produce high exposure levels for bees, with lethal effects compatible with colony losses phenomena observed by beekeepers.


Scientific Reports | 2016

Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

Ivan Kourtchev; Chiara Giorio; Antti Manninen; Eoin Wilson; Brendan M. Mahon; Juho Aalto; Maija K. Kajos; Dean S. Venables; Taina M. Ruuskanen; Janne Levula; Matti Loponen; Sarah Connors; N. R. P. Harris; Defeng Zhao; Astrid Kiendler-Scharr; Thomas F. Mentel; Yinon Rudich; Mattias Hallquist; Jean-François Doussin; Willy Maenhaut; Jaana Bäck; Tuukka Petäjä; John C. Wenger; Markku Kulmala; Markus Kalberer

Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.


Environmental Science & Technology | 2015

Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra

Chiara Giorio; Andrea Tapparo; M. Dall'Osto; David C. S. Beddows; Johanna K. Esser-Gietl; Robert M. Healy; Roy M. Harrison

Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.


Journal of the American Chemical Society | 2017

Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection

Chiara Giorio; Steven J. Campbell; Maurizio Bruschi; Francesco Tampieri; Antonio Barbon; Antonio Toffoletti; Andrea Tapparo; Claudia Paijens; Andrew J. Wedlake; Peter Grice; Duncan J. Howe; Markus Kalberer

Biogenic alkenes, which are among the most abundant volatile organic compounds in the atmosphere, are readily oxidized by ozone. Characterizing the reactivity and kinetics of the first-generation products of these reactions, carbonyl oxides (often named Criegee intermediates), is essential in defining the oxidation pathways of organic compounds in the atmosphere but is highly challenging due to the short lifetime of these zwitterions. Here, we report the development of a novel online method to quantify atmospherically relevant Criegee intermediates (CIs) in the gas phase by stabilization with spin traps and analysis with proton-transfer reaction mass spectrometry. Ozonolysis of α-pinene has been chosen as a proof-of-principle model system. To determine unambiguously the structure of the spin trap adducts with α-pinene CIs, the reaction was tested in solution, and reaction products were characterized with high-resolution mass spectrometry, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopy. DFT calculations show that addition of the Criegee intermediate to the DMPO spin trap, leading to the formation of a six-membered ring adduct, occurs through a very favorable pathway and that the product is significantly more stable than the reactants, supporting the experimental characterization. A flow tube set up has been used to generate spin trap adducts with α-pinene CIs in the gas phase. We demonstrate that spin trap adducts with α-pinene CIs also form in the gas phase and that they are stable enough to be detected with online mass spectrometry. This new technique offers for the first time a method to characterize highly reactive and atmospherically relevant radical intermediates in situ.


Physical Chemistry Chemical Physics | 2016

Dynamic viscosity mapping of the oxidation of squalene aerosol particles

Athanasios Athanasiadis; Clare Fitzgerald; Nm Davidson; Chiara Giorio; Stanley W. Botchway; Andrew D. Ward; Markus Kalberer; Francis D. Pope; Marina K. Kuimova

Organic aerosols (OAs) play important roles in multiple atmospheric processes, including climate change, and can impact human health. The physico-chemical properties of OAs are important for all these processes and can evolve through reactions with various atmospheric components, including oxidants. The dynamic nature of these reactions makes it challenging to obtain a true representation of their composition and surface chemistry. Here we investigate the microscopic viscosity of the model OA composed of squalene, undergoing chemical aging. We employ Fluorescent Lifetime Imaging Microscopy (FLIM) in conjunction with viscosity sensitive probes termed molecular rotors, in order to image the changes in microviscosity in real time during oxidation with ozone and hydroxyl radicals, which are two key oxidising species in the troposphere. We also recorded the Raman spectra of the levitated particles to follow the reactivity during particle ozonolysis. The levitation of droplets was achieved via optical trapping that enabled simultaneous levitation and measurement via FLIM or Raman spectroscopy and allowed the true aerosol phase to be probed. Our data revealed a very significant increase in viscosity of the levitated squalene droplets upon ozonolysis, following their transformation from the liquid to solid phase that was not observable when the oxidation was carried out on coverslip mounted droplets. FLIM imaging with sub-micron spatial resolution also revealed spatial heterogeneity in the viscosity distribution of oxidised droplets. Overall, a combination of molecular rotors, FLIM and optical trapping is able to provide powerful insights into OA chemistry and the microscopic structure that enables the dynamic monitoring of microscopic viscosity in aerosol particles in their true phase.


Analytical Chemistry | 2015

Direct Surface Analysis Coupled to High-Resolution Mass Spectrometry Reveals Heterogeneous Composition of the Cuticle of Hibiscus trionum Petals

Chiara Giorio; Edwige Moyroud; Beverley J. Glover; Paul C Skelton; Markus Kalberer

Plant cuticle, which is the outermost layer covering the aerial parts of all plants including petals and leaves, can present a wide range of patterns that, combined with cell shape, can generate unique physical, mechanical, or optical properties. For example, arrays of regularly spaced nanoridges have been found on the dark (anthocyanin-rich) portion at the base of the petals of Hibiscus trionum. Those ridges act as a diffraction grating, producing an iridescent effect. Because the surface of the distal white region of the petals is smooth and noniridescent, a selective chemical characterization of the surface of the petals on different portions (i.e., ridged vs smooth) is needed to understand whether distinct cuticular patterns correlate with distinct chemical compositions of the cuticle. In the present study, a rapid screening method has been developed for the direct surface analysis of Hibiscus trionum petals using liquid extraction surface analysis (LESA) coupled with high-resolution mass spectrometry. The optimized method was used to characterize a wide range of plant metabolites and cuticle monomers on the upper (adaxial) surface of the petals on both the white/smooth and anthocyanic/ridged regions, and on the lower (abaxial) surface, which is entirely smooth. The main components detected on the surface of the petals are low-molecular-weight organic acids, sugars, and flavonoids. The ridged portion on the upper surface of the petal is enriched in long-chain fatty acids, which are constituents of the wax fraction of the cuticle. These compounds were not detected on the white/smooth region of the upper petal surface or on the smooth lower surface.


Journal of Physical Chemistry A | 2017

Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation

Chiara Giorio; Anne Monod; Lola Brégonzio-Rozier; Helen Langley DeWitt; Mathieu Cazaunau; Brice Temime-Roussel; Aline Gratien; Vincent Michoud; E. Pangui; Sylvain Ravier; Arthur Zielinski; Andrea Tapparo; Reinhilde Vermeylen; M. Claeys; Didier Voisin; Markus Kalberer; Jean-François Doussin

Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth’s changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25–32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15–20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.


Talanta | 2019

A new method for the determination of primary and secondary terrestrial and marine biomarkers in ice cores using liquid chromatography high-resolution mass spectrometry

Amy C.F. King; Chiara Giorio; Eric W. Wolff; Elizabeth R. Thomas; Ornela Karroca; Marco Roverso; Margit Schwikowski; Andrea Tapparo; Andrea Gambaro; Markus Kalberer

The majority of atmospheric compounds measured in ice cores are inorganic, while analysis of their organic counterparts is a less well developed field. In recent years, understanding of formation, transport pathways and preservation of these compounds in ice and snow has improved, showing great potential for their use as biomarkers in ice cores. This study presents an optimised analytical technique for quantification of terrestrial and marine biosphere emissions of secondary organic aerosol (SOA) components and fatty acids in ice using HPLC-MS analysis. Concentrations of organic compounds in snow and ice are extremely low (typically ppb or ppt levels) and thus pre-concentration is required prior to analysis. Stir bar sorptive extraction (SBSE) showed potential for fatty acid compounds, but failed to recover SOA compounds. Solid phase extraction (SPE) recovered compounds across both organic groups but methods improving some recoveries came at the expense of others, and background contamination of fatty acids was high. Rotary evaporation was by far the best performing method across both SOA and fatty acid compounds, with average recoveries of 80%. The optimised preconcentration - HPLC-MS method achieved repeatability of 9% averaged for all compounds. In environmental samples, both concentrations and seasonal trends were observed to be reproducible when analysed in two different laboratories using the same method.


Aerosol Science and Engineering | 2018

Compositional Analysis of Adsorbed Organic Aerosol on a Microresonator Mass Sensor

Arthur Zielinski; Steven J. Campbell; Ashwin A. Seshia; Roderic L. Jones; Markus Kalberer; Chiara Giorio

Aerosol mass measurements are a key air pollution parameter that is regulated in most countries. Beyond mass measurements, the precise composition of the aerosol is essential in identifying sources and impacts on health and climate. The conventional method for simultaneously quantifying mass and composition is to collect aerosol onto filter or impactor samples followed by laboratory analysis. This approach requires long collection times—providing poor time resolution for mass measurements—and long sample preparation prior to analysis. The first limitation can be circumvented with microresonators, which are novel particulate mass sensors with high mass sensitivities and time resolutions. In addition, direct surface analysis techniques, like liquid extraction surface analysis mass spectrometry (LESA–MS), shorten sample preparation times. This work combines, for the first time, the high time resolution mass measurements of a microresonator with the integrated compositional analysis of LESA–MS. Laboratory-produced secondary organic aerosol were collected onto a microresonator via impaction with LESA–MS being used to analyze the chemical composition afterwards. The results were compared with classic filter extraction methods and literature with the final spectra matching the expected reaction products. The combined technique demonstrates an extension to current microresonator applications and illustrates their potential for ambient aerosol studies.

Collaboration


Dive into the Chiara Giorio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Monod

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge