Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Luise is active.

Publication


Featured researches published by Chiara Luise.


Nature | 2006

Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication

Raffaella Di Micco; Marzia Fumagalli; Angelo Cicalese; Sara Piccinin; Patrizia Gasparini; Chiara Luise; Catherine Schurra; Massimiliano Garre; Paolo Nuciforo; Aaron Bensimon; Roberta Maestro; Pier Giuseppe Pelicci; Fabrizio d'Adda di Fagagna

Early tumorigenesis is associated with the engagement of the DNA-damage checkpoint response (DDR). Cell proliferation and transformation induced by oncogene activation are restrained by cellular senescence. It is unclear whether DDR activation and oncogene-induced senescence (OIS) are causally linked. Here we show that senescence, triggered by the expression of an activated oncogene (H-RasV12) in normal human cells, is a consequence of the activation of a robust DDR. Experimental inactivation of DDR abrogates OIS and promotes cell transformation. DDR and OIS are established after a hyper-replicative phase occurring immediately after oncogene expression. Senescent cells arrest with partly replicated DNA and with DNA replication origins having fired multiple times. In vivo DNA labelling and molecular DNA combing reveal that oncogene activation leads to augmented numbers of active replicons and to alterations in DNA replication fork progression. We also show that oncogene expression does not trigger a DDR in the absence of DNA replication. Last, we show that oncogene activation is associated with DDR activation in a mouse model in vivo. We propose that OIS results from the enforcement of a DDR triggered by oncogene-induced DNA hyper-replication.


Nature | 2007

Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response

Chiara Gorrini; Massimo Squatrito; Chiara Luise; Nelofer Syed; Daniele Perna; Landon Wark; Francesca Martinato; Domenico Sardella; Alessandro Verrecchia; Samantha Bennett; Stefano Confalonieri; Matteo Cesaroni; Francesco Marchesi; Milena Gasco; Eugenio Scanziani; Maria Capra; Sabine Mai; Paolo Nuciforo; Tim Crook; John Lough; Bruno Amati

The acetyl-transferase Tip60 might influence tumorigenesis in multiple ways. First, Tip60 is a co-regulator of transcription factors that either promote or suppress tumorigenesis, such as Myc and p53. Second, Tip60 modulates DNA-damage response (DDR) signalling, and a DDR triggered by oncogenes can counteract tumour progression. Using Eμ–myc transgenic mice that are heterozygous for a Tip60 gene (Htatip) knockout allele (hereafter denoted as Tip60+/– mice), we show that Tip60 counteracts Myc-induced lymphomagenesis in a haplo-insufficient manner and in a time window that is restricted to a pre- or early-tumoral stage. Tip60 heterozygosity severely impaired the Myc-induced DDR but caused no general DDR defect in B cells. Myc- and p53-dependent transcription were not affected, and neither were Myc-induced proliferation, activation of the ARF–p53 tumour suppressor pathway or the resulting apoptotic response. We found that the human TIP60 gene (HTATIP) is a frequent target for mono-allelic loss in human lymphomas and head-and-neck and mammary carcinomas, with concomitant reduction in mRNA levels. Immunohistochemical analysis also demonstrated loss of nuclear TIP60 staining in mammary carcinomas. These events correlated with disease grade and frequently concurred with mutation of p53. Thus, in both mouse and human, Tip60 has a haplo-insufficient tumour suppressor activity that is independent from—but not contradictory with—its role within the ARF–p53 pathway. We suggest that this is because critical levels of Tip60 are required for mounting an oncogene-induced DDR in incipient tumour cells, the failure of which might synergize with p53 mutation towards tumour progression.


PLOS ONE | 2011

An Atlas of Altered Expression of Deubiquitinating Enzymes in Human Cancer

Chiara Luise; Maria Capra; Maddalena Donzelli; Giovanni Mazzarol; Maria Giovanna Jodice; Paolo Nuciforo; Giuseppe Viale; Pier Paolo Di Fiore; Stefano Confalonieri

Background Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin (Ub) or ubiquitin-like gene products, remodel polyubiquitin(-like) chains on target proteins, and counteract protein ubiquitination exerted by E3 ubiquitin-ligases. A wealth of studies has established the relevance of DUBs to the control of physiological processes whose subversion is known to cause cellular transformation, including cell cycle progression, DNA repair, endocytosis and signal transduction. Altered expression of DUBs might, therefore, subvert both the proteolytic and signaling functions of the Ub system. Methodology/Principal Findings In this study, we report the first comprehensive screening of DUB dysregulation in human cancers by in situ hybridization on tissue microarrays (ISH-TMA). ISH-TMA has proven to be a reliable methodology to conduct this kind of study, particularly because it allows the precise identification of the cellular origin of the signals. Thus, signals associated with the tumor component can be distinguished from those associated with the tumor microenvironment. Specimens derived from various normal and malignant tumor tissues were analyzed, and the “normal” samples were derived, whenever possible, from the same patients from whom tumors were obtained. Of the ∼90 DUBs encoded by the human genome, 33 were found to be expressed in at least one of the analyzed tissues, of which 22 were altered in cancers. Selected DUBs were subjected to further validation, by analyzing their expression in large cohorts of tumor samples. This analysis unveiled significant correlations between DUB expression and relevant clinical and pathological parameters, which were in some cases indicative of aggressive disease. Conclusions/Significance The results presented here demonstrate that DUB dysregulation is a frequent event in cancer, and have implications for therapeutic approaches based on DUB inhibition.


Developmental Cell | 2014

The CDC42-interacting protein 4 controls epithelial cell cohesion and tumor dissemination.

Yannève Rolland; Paola Marighetti; Chiara Malinverno; Stefano Confalonieri; Chiara Luise; Nadia Ducano; Andrea Palamidessi; Sara Bisi; Hiroaki Kajiho; Flavia Troglio; Olga G. Shcherbakova; Alexander R. Dunn; Amanda Oldani; Letizia Lanzetti; Pier Paolo Di Fiore; Andrea Disanza; Giorgio Scita

The role of endocytic proteins and the molecular mechanisms underlying epithelial cell cohesion and tumor dissemination are not well understood. Here, we report that the endocytic F-BAR-containing CDC42-interacting protein 4 (CIP4) is required for ERBB2- and TGF-β1-induced cell scattering, breast cancer (BC) cell motility and invasion into 3D matrices, and conversion from ductal breast carcinoma in situ to invasive carcinoma in mouse xenograft models. CIP4 promotes the formation of an E-cadherin-CIP4-SRC complex that controls SRC activation, E-cadherin endocytosis, and localized phosphorylation of the myosin light chain kinase, thereby impinging on the actomyosin contractility required to generate tangential forces to break cell-cell junctions. CIP4 is upregulated in ERBB2-positive human BC, correlates with increased distant metastasis, and is an independent predictor of poor disease outcome in subsets of BC patients. Thus, it critically controls cell-cell cohesion and is required for the acquisition of an invasive phenotype in breast tumors.


American Journal of Pathology | 2011

Pirin inhibits cellular senescence in melanocytic cells.

Silvia Licciulli; Chiara Luise; Gaia Scafetta; Maria Capra; Giuseppina Giardina; Paolo Nuciforo; Silvano Bosari; Giuseppe Viale; Giovanni Mazzarol; Chiara Tonelli; Luisa Lanfrancone; Myriam Alcalay

Cellular senescence has been widely recognized as a tumor suppressing mechanism that acts as a barrier to cancer development after oncogenic stimuli. A prominent in vivo model of the senescence barrier is represented by nevi, which are composed of melanocytes that, after an initial phase of proliferation induced by activated oncogenes (most commonly BRAF), are blocked in a state of cellular senescence. Transformation to melanoma occurs when genes involved in controlling senescence are mutated or silenced and cells reacquire the capacity to proliferate. Pirin (PIR) is a highly conserved nuclear protein that likely functions as a transcriptional regulator whose expression levels are altered in different types of tumors. We analyzed the expression pattern of PIR in adult human tissues and found that it is expressed in melanocytes and has a complex pattern of regulation in nevi and melanoma: it is rarely detected in mature nevi, but is expressed at high levels in a subset of melanomas. Loss of function and overexpression experiments in normal and transformed melanocytic cells revealed that PIR is involved in the negative control of cellular senescence and that its expression is necessary to overcome the senescence barrier. Our results suggest that PIR may have a relevant role in melanoma progression.


PLOS ONE | 2012

Loss of CCDC6, the First Identified RET Partner Gene, Affects pH2AX S139 Levels and Accelerates Mitotic Entry upon DNA Damage

Francesco Merolla; Chiara Luise; Mark T. Muller; Roberto Pacelli; Alfredo Fusco; Angela Celetti

CCDC6 was originally identified in chimeric genes caused by chromosomal translocation involving the RET proto-oncogene in some thryoid tumors mostly upon ionizing radiation exposure. Recognised as a pro-apoptotic phosphoprotein that negatively regulates CREB1-dependent transcription, CCDC6 is an ATM substrate that is responsive to genotoxic stress. Here we report that following genotoxic stress, loss or inactivation of CCDC6 in cancers that carry the CCDC6 fusion, accelerates the dephosphorylation of pH2AX S139, resulting in defective G2 arrest and premature mitotic entry. Moreover, we show that CCDC6 depleted cells appear to repair DNA damaged in a shorter time compared to controls, based on reporter assays in cells. High-troughput proteomic screening predicted the interaction between the CCDC6 gene product and the catalytic subunit of Serin–Threonin Protein Phosphatase 4 (PP4c) recently identified as the evolutionarily conserved pH2AX S139 phosphatase that is activated upon DNA Damage. We describe the interaction between CCDC6 and PP4c and we report the modulation of PP4c enzymatic activity in CCDC6 depleted cells. We discuss the functional significance of CCDC6-PP4c interactions and hypothesize that CCDC6 may act in the DNA Damage Response by negatively modulating PP4c activity. Overall, our data suggest that in primary tumours the loss of CCDC6 function could influence genome stability and thereby contribute to carcinogenesis.


International Journal of Cancer | 2015

New therapeutic perspectives in CCDC6 deficient lung cancer cells

Francesco Morra; Chiara Luise; Roberta Visconti; Stefania Staibano; Francesco Merolla; Gennaro Ilardi; Gianluca Guggino; Simona Paladino; Daniela Sarnataro; Renato Franco; Roberto Monaco; Federica Zitomarino; Roberto Pacelli; Guglielmo Monaco; Gaetano Rocco; Aniello Cerrato; Spiros Linardopoulos; Mark T. Muller; Angela Celetti

Non‐small cell lung cancer (NSCLC) is the main cause of cancer‐related death worldwide and new therapeutic strategies are urgently needed. In this study, we have characterized a panel of NSC lung cancer cell lines for the expression of coiled‐coil‐domain containing 6 (CCDC6), a tumor suppressor gene involved in apoptosis and DNA damage response. We show that low CCDC6 protein levels are associated with a weak response to DNA damage and a low number of Rad51 positive foci. Moreover, CCDC6 deficient lung cancer cells show defects in DNA repair via homologous recombination. In accordance with its role in the DNA damage response, CCDC6 attenuation confers resistance to cisplatinum, the current treatment of choice for NSCLC, but sensitizes the cells to olaparib, a small molecule inhibitor of the repair enzymes PARP1/2. Remarkably, the combination of the two drugs is more effective than each agent individually, as demonstrated by a combination index <1. Finally, CCDC6 is expressed at low levels in about 30% of the NSCL tumors we analyzed by TMA immunostaining. The weak CCDC6 protein staining is significatively correlated with the presence of lymph node metastasis (p ≤ 0.02) and negatively correlated to the disease free survival (p ≤ 0.01) and the overall survival (p ≤ 0.05). Collectively, the data indicate that CCDC6 levels provide valuable insight for OS. CCDC6 could represent a predictive biomarker of resistance to conventional single mode therapy and yield insight on tumor sensitivity to PARP inhibitors in NSCLC.


BMC Cancer | 2013

Critical role of CCDC6 in the neoplastic growth of testicular germ cell tumors

Stefania Staibano; Gennaro Ilardi; Vincenza Leone; Chiara Luise; Francesco Merolla; Francesco Morra; Maria Siano; Renato Franco; Alfredo Fusco; Paolo Chieffi; Angela Celetti

BackgroundDNA damage response has been clearly described as an anti-cancer barrier in early human tumorigenesis. Moreover, interestingly, testicular germ cell tumors (TGCTs) have been reported to lack the DNA Damage Response (DDR) pathway activation.CCDC6 is a pro-apoptotic phosphoprotein substrate of the kinase ataxia telangectasia mutated (ATM) able to sustain DNA damage checkpoint in response to genotoxic stress and is commonly rearranged in malignancies upon fusion with different partners.In our study we sought to determine whether CCDC6 could have a role in the patho-genesis of testicular germ cell tumors.MethodsTo achieve this aim, analysis for CCDC6 expression has been evaluated on serial sections of the mouse testis by immunohistochemistry and on separate populations of murine testicular cells by western blot. Next, the resistance to DNA damage-induced apoptosis and the production of reactive oxygen species has been investigated in GC1 cells, derived from immortalized type B murine germ cells, following CCDC6 silencing. Finally, the CCDC6 expression in normal human testicular cells, in Intratubular Germ Cell Neoplasia Unclassified (IGCNU), in a large series of male germ cell tumours and in the unique human seminoma TCam2 cell line has been evaluated by immunohistochemistry and by Western Blot analyses.ResultsThe analysis of the CCDC6 expression revealed its presence in Sertoli cells and in spermatogonial cells. CCDC6 loss was the most consistent feature among the primary tumours and TCam2 cells. Interestingly, following treatment with low doses of H2O2, the silencing of CCDC6 in GC1 cells caused a decrease in the oxidized form of cytochrome c and low detection of Bad, PARP-1 and Caspase 3 proteins. Moreover, in the silenced cells, upon oxidative damage, the cell viability was protected, the γH2AX activation was impaired and the Reactive Oxygen Species (ROS) release was decreased.ConclusionsTherefore, our results suggest that the loss of CCDC6 could aid the spermatogonial cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants and contributes to testicular neoplastic growth.


Histopathology | 2012

Overexpression of chromatin assembly factor-1 p60, poly(ADP-ribose) polymerase 1 and nestin predicts metastasizing behaviour of oral cancer

Massimo Mascolo; Gennaro Ilardi; Maria Fiammetta Romano; Angela Celetti; Maria Siano; Simona Romano; Chiara Luise; Francesco Merolla; Alba Rocco; Maria Luisa Vecchione; Gaetano De Rosa; Stefania Staibano

Mascolo M, Ilardi G, Romano M F, Celetti A, Siano M, Romano S, Luise C, Merolla F, Rocco A, Vecchione M L, De Rosa G & Staibano S 
(2012) Histopathology
Overexpression of chromatin assembly factor‐1 p60, poly(ADP‐ribose) polymerase 1 and nestin predicts metastasizing behaviour of oral cancer


BMC Cell Biology | 2010

Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches

Silvia Licciulli; Chiara Luise; Andrea Zanardi; Luca Giorgetti; Giuseppe Viale; Luisa Lanfrancone; Roberta Carbone; Myriam Alcalay

BackgroundPirin (PIR) is a highly conserved nuclear protein originally isolated as an interactor of NFI/CTF1 transcription/replication factor. It is a member of the functionally diverse cupin superfamily and its activity has been linked to different biological and molecular processes, such as regulation of transcription, apoptosis, stress response and enzymatic processes. Although its precise role in these functions has not yet been defined, PIR expression is known to be deregulated in several human malignancies.ResultsWe performed immunohistochemical analysis of PIR expression in primary samples from normal human tissues and tumors and identified a dislocation of PIR to the cytoplasm in a subset of melanomas, and a positive correlation between cytoplasmic PIR levels and melanoma progression. PIR localization was subsequently analyzed in vitro in melanoma cell lines through a high content immunofluorescence based approach (ImmunoCell-Array).ConclusionsThe high consistency between in vivo and in vitro results obtained by immunohistochemistry and ImmunoCell-Array provides a validation of the potential of ImmunoCell-Array technology for the rapid screening of putative biological markers, and suggests that cytoplasmic localization of PIR may represent a characteristic of melanoma progression.

Collaboration


Dive into the Chiara Luise's collaboration.

Top Co-Authors

Avatar

Angela Celetti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Merolla

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Confalonieri

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Gennaro Ilardi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giovanni Mazzarol

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Maria Capra

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Stefania Staibano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alfredo Fusco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge