Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chidozie J. Amuzie is active.

Publication


Featured researches published by Chidozie J. Amuzie.


Toxicology Letters | 2008

Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse

James J. Pestka; Zahidul Islam; Chidozie J. Amuzie

Deoxynivalenol (DON or vomitoxin) is a trichothecene mycotoxin commonly found in cereal grains that adversely affects growth and immune function in experimental animals. A competitive enzyme-linked immunosorbent assay (ELISA) was used to monitor the kinetics of distribution and clearance of DON in tissues of young adult B6C3F1 male mice that were orally administered 25mg/kg bw of the toxin. DON was detectable from 5 min to 24h in plasma, liver, spleen and brain and from 5 min to 8h in heart and kidney. The highest DON plasma concentrations were observed within 5-15 min (12 microg/mL) after dosing. There was rapid clearance following two-compartment kinetics (t(1/2)alpha=20.4 min, t 1/2 beta=11.8h) with 5% and 2% maximum plasma DON concentrations remaining after 8 and 24h, respectively. DON distribution and clearance kinetics in other tissues were similar to that of plasma. At 5 min, DON concentrations in mug/g were 19.5+/-1.9 in liver, 7.6+/-0.5 in kidney, 7.3+/-0.8 in spleen, 6.8+/-0.9 in heart and 0.8+/-0.1 in the brain. DON recoveries in tissues by ELISA were comparable to a previous study that employed (3)H-DON and 25mg/kg bw DON dose. The ELISA was further applicable to the detection of DON in plasma of mice exposed to the toxin via diet. This approach provides a simple strategy that can be used to answer relevant questions in rodents of how dose, species, age, gender, genetic background and route/duration of exposure impact DON uptake and clearance.


Food and Chemical Toxicology | 2008

Tissue distribution and proinflammatory cytokine gene expression following acute oral exposure to deoxynivalenol: comparison of weanling and adult mice.

James J. Pestka; Chidozie J. Amuzie

The frequent presence of deoxynivalenol (DON) in cereal-based foods and the high intake of these foods by children raises particular concerns about the relative susceptibility of this subpopulation to adverse effects evoked by this mycotoxin. We tested the hypothesis that both toxicokinetics and proinflammatory cytokine gene expression following a oral DON exposure at 5mg/kg bw differ between weanling (3-4 wk) and young adult (8-10 wk) female mice. DON was rapidly taken up with maximum plasma concentrations reaching 1.0 microg/ml in adult mice at 15 min, whereas DON levels were approximately twice as much in weanling mice at these times. DON was rapidly cleared in both weanling and adult mice with concentrations being reduced by 78% and 81% of the peak levels, respectively, after 2h. DON accumulation and clearance in spleen, liver, lung and kidney followed similar kinetics to that of plasma with tissue burdens also reaching twice that of adult mice. When TNF-alpha, IL-1beta and IL-6 mRNAs in spleens (a primary source of systemic proinflammatory cytokines) were used as biomarkers of the DONs effects, expression of these mRNAs was two to three times greater in weanling than adult mouse. However, differences in proinflammatory cytokine expression were less robust or not apparent in the liver or lung. Taken together, these data suggest that young mice are modestly more susceptible than adult mice to the adverse effects of DON and that this might result from a greater toxin tissue burden.


Toxicology | 2008

Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse: comparison of nasal vs. oral exposure.

Chidozie J. Amuzie; Jack R. Harkema; James J. Pestka

Oral exposure to the trichothecene deoxynivalenol (DON), a common cereal grain contaminant, adversely affects growth and immune function in experimental animals. Besides foodborne exposure, the potential exists for DON to become airborne during the harvest and handling of grains and therefore pose a risk to agricultural workers. The purpose of this study was to compare the effects of oral and intranasal exposure to DON (5mg/kg bw) on tissue distribution and proinflammatory cytokine induction in the adult female mouse. Competitive direct ELISA revealed that, regardless of exposure route, DON concentrations in plasma, spleen, liver, lung and kidney were maximal within 15-30 min and declined by 75-90% after 120 min. However, plasma and tissue DON concentrations were 1.5-3 times higher following intranasal exposure as compared to oral exposure. The functional significance of elevated DON tissue concentrations was assessed by measuring IL-1beta, IL-6, and TNF-alpha mRNA responses in spleen, liver and lung. Oral exposure to DON-induced robust proinflammatory cytokine gene expression after 60 and 120 min. In contrast, inductions of IL-1beta, IL-6 and TNF-alpha mRNAs in nasally exposed mice were 2-10, 2-5 and 2-4 times greater, respectively, than those in the tissues of orally exposed mice. Taken together, these data suggest that DON was more toxic to the mouse when nasally exposed than when orally exposed, and that this might relate to greater tissue burden of the toxin.


Toxicological Sciences | 2010

Suppression of Insulin-Like Growth Factor Acid-Labile Subunit Expression—A Novel Mechanism for Deoxynivalenol-Induced Growth Retardation

Chidozie J. Amuzie; James J. Pestka

Consumption of deoxynivalenol (DON), a trichothecene mycotoxin commonly detected in cereal-based foods, causes impaired growth in many animal species. While growth retardation is used as a basis for regulating DON levels in human food, the underlying mechanisms remain poorly understood. Oral exposure of mice to DON rapidly induces multiorgan expression of proinflammatory cytokines, and this is followed by upregulation of several suppressors of cytokine signaling (SOCS), some of which are capable of impairing growth hormone (GH) signaling. The purpose of this study was to test the hypothesis that impairment of the GH axis precedes DON-induced growth retardation in the mouse. Subchronic dietary exposure of young (4-week old) mice to DON (20 ppm) over a period of 2-8 weeks was found to (1) impair weight gain, (2) result in a steady-state plasma DON concentration (40-60 ng/ml), (3) downregulate hepatic insulin-like growth factor acid-labile subunit (IGFALS) mRNA expression, and (4) reduce circulating insulin-like growth factor 1 (IGF1) and IGFALS levels. Acute oral exposure to DON at 0.5-12.5 mg/kg body weight (bw) markedly suppressed hepatic IGFALS mRNA levels within 2 h in a dose-dependent fashion, whereas 0.1 mg/kg bw was without effect. DON-induced IGFALS mRNA upregulation occurred both with and without exogenous GH treatment. These latter effects co-occurred with robust hepatic suppressors of cytokine signaling 3 upregulation. Taken together, these data suggest that oral DON exposure perturbs GH axis by suppressing two clinically relevant growth-related proteins, IGFALS and IGF1. Both have potential to serve as biomarkers of effect in populations exposed to this common foodborne mycotoxin.


Toxicological Sciences | 2009

Induction of Suppressors of Cytokine Signaling by the Trichothecene Deoxynivalenol in the Mouse

Chidozie J. Amuzie; Junko Shinozuka; James J. Pestka

Deoxynivalenol (DON), a trichothecene mycotoxin found in grains and cereal-based foods worldwide, impairs weight gain in experimental animals but the underlying mechanisms remain undetermined. Oral exposure to DON induces rapid and transient upregulation of proinflammatory cytokine expression in the mouse. The latter are known to induce several suppressors of cytokine signaling (SOCS), some of which impair growth hormone (GH) signaling. We hypothesized that oral exposure to DON will induce SOCS expression in the mouse. Real-time PCR and cytokine bead array revealed that oral gavage with DON rapidly (1 h) induced tumor necrosis factor-alpha and interleukin-6 mRNA and protein expression in several organs and plasma, respectively. Upregulation of mRNAs for four well-characterized SOCS (CIS [cytokine-inducible SH2 domain protein], SOCS1, SOCS2, and SOCS3) was either concurrent with (1 h) or subsequent to cytokine upregulation (2 h). Notably, DON-induced SOCS3 mRNAs in muscle, spleen and liver, with CIS1, SOCS1, and SOCS2 occurring to a lesser extent. Hepatic SOCS3 mRNA was a very sensitive indicator of DON exposure with SOCS3 protein being detectable in the liver well after the onset of cytokine decline (5 h). Furthermore, hepatic SOCS upregulation was associated with about 75% suppression of GH-inducible insulin-like growth factor acid labile subunit. Taken together, DON-induced cytokine upregulation corresponded to increased expression of several SOCS, and was associated with suppression of GH-inducible gene expression in the liver.


Journal of Toxicology and Environmental Health | 2009

Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity.

Jane F. Maddox; Chidozie J. Amuzie; Maoxiang Li; Sandra W. Newport; Erica M. Sparkenbaugh; Christopher F. Cuff; James J. Pestka; Glenn H. Cantor; Robert A. Roth; Patricia E. Ganey

Acetaminophen (APAP)-induced hepatotoxicity accounts for nearly half of acute liver failure cases in the United States. The doses that produce hepatotoxicity vary considerably and many risk factors have been proposed, including liver inflammation from viral hepatitis. Interestingly, inflammatory stress from another stimulus, bacterial endotoxin (lipopolysaccharide, LPS), renders the liver more sensitive to hepatotoxicity from numerous xenobiotic agents. The purpose of these studies was to test the hypothesis that inflammation induced by LPS or infection with reovirus increases sensitivity to APAP-induced liver injury. For LPS-induced inflammation, C57BL/6J mice were treated with either saline or LPS (44 × 106 EU/kg, ip) 2 h before treatment with APAP (100–400 mg/kg, ip) or saline. No elevation in serum alanine aminotransferase (ALT) activity was observed in mice that received vehicle or LPS alone. LPS co-treatment produced a leftward shift of the dose-response curve for APAP-induced hepatotoxicity and led to significantly greater tumor necrosis factor-α (TNF) production than APAP alone. Reovirus serotype 1 (108 PFU, iv) induced inflammation in Balb/c mice as evidenced by increases in hepatic mRNAs for macrophage inhibitory protein-2, interleukin-6, and TNF. Co-administration of reovirus and APAP at doses of 450 and 700 mg/kg (2 h after reovirus) led to increases in serum ALT activity, whereas neither reovirus nor APAP alone produced liver injury. Consistent with the increases in serum ALT activity, histopathologic examination revealed centrilobular necrosis with marked neutrophilic accumulation only in livers of mice treated with LPS/APAP or with reovirus/APAP. The results suggest that normally noninjurious doses of APAP are rendered hepatotoxic by modest inflammation, whether bacterial or viral in origin.


Molecular Nutrition & Food Research | 2011

Body composition and hormonal effects following exposure to mycotoxin deoxynivalenol in the high-fat diet-induced obese mouse.

Kazuo Kobayashi-Hattori; Chidozie J. Amuzie; Brenna M. Flannery; James J. Pestka

SCOPE To characterize the effects of ingesting the common foodborne mycotoxin deoxynivalenol (DON) on body weight and composition in the high-fat (HF) diet-induced obese mice, a model of human obesity. METHODS AND RESULTS Female B6C3F1 mice were initially fed HF diets containing 45% kcal (HF45) or 60% kcal (HF60) as fat for 94 days to induce obesity. Half of each group was either continued on unamended HF diets or fed HF diets containing 10 mg/kg DON (DON-HF45 or DON-HF60) for another 54 days. Additional control mice were fed a low-fat (LF) diet containing 10%  kcal as fat for the entire 148-day period. DON induced rapid decreases in body weights and fat mass, which stabilized to those of the LF control within 11 days. These effects corresponded closely to a robust transient decrease in food consumption. While lean body mass did not decline in DON-fed groups, further increases were suppressed. DON exposure reduced plasma insulin, leptin, insulin-like growth factor 1, and insulin-like growth factor acid labile subunit as well as increased hypothalamic mRNA level of the orexigenic agouti-related protein. CONCLUSION DON-mediated effects on body weight, fat mass, food intake, and hormonal levels in obese mice were consistent with a state of chronic energy restriction.


Toxicological Sciences | 2010

Pulmonary responses to Stachybotrys chartarum and its toxins: mouse strain affects clearance and macrophage cytotoxicity.

Jamie H. Rosenblum Lichtenstein; Ramon M. Molina; Thomas C. Donaghey; Chidozie J. Amuzie; James J. Pestka; Brent A. Coull; Joseph D. Brain

We investigated differences in the pulmonary and systemic clearance of Stachybotrys chartarum spores in two strains of mice, BALB/c and C57BL/6J. To evaluate clearance, mice were intratracheally instilled with a suspension of radiolabeled S. chartarum spores or with unlabeled spores. The lungs of C57BL/6J mice showed more rapid spore clearance than the lungs of BALB/c mice, which correlated with increased levels of spore-associated radioactivity in the GI tracts of C57BL/6J as compared with BALB/c mice. To identify mechanisms responsible for mouse strain differences in spore clearance and previously described lung inflammatory responses, we exposed alveolar macrophages (AMs) lavaged from BALB/c and C57BL/6J mice to S. chartarum spores, S. chartarum spore toxin (SST), and satratoxin G (SG) in vitro. The S. chartarum spores were found to be highly toxic with most cells from either mouse strain being killed within 24 h when exposed to a spore:cell ratio of 1:75. The spores were more lethal to AMs from C57BL/6J than those from BALB/c mice. In mice, the SST elicited many of the same inflammatory responses as the spores in vivo, including AM recruitment, pulmonary hemorrhage, and cytokine production. Our data suggest that differences in pulmonary spore clearance may contribute to the differences in pulmonary responses to S. chartarum between BALB/c and C57BL/6J mice. Enhanced AM survival and subsequent macrophage-mediated inflammation may also contribute to the higher susceptibility of BALB/c mice to S. chartarum pulmonary effects. Analogous genetic differences among humans may contribute to reported variable sensitivity to S. chartarum.


Journal of Toxicology and Environmental Health | 2011

Effects of Deoxynivalenol Consumption on Body Weight and Adiposity in the Diet-Induced Obese Mouse

Chidozie J. Amuzie; Brenna M. Flannery; A. M. Ulrich; James J. Pestka

The potential for the obese state to alter sensitivity to toxic chemicals is poorly understood. In this study, dose-response effects of the trichothecene deoxynivalenol (DON), a common food-borne mycotoxin, were determined on body weight of diet-induced obese mice. In study 1, the effects of feeding adult female B6C3F1 mice a high-fat diet (HFD; 60% kcal from fat) containing 0, 2, 5, or 10 ppm DON for 10 wk on body weight and adiposity were compared. Mice consuming 5 or 10 ppm DON exhibited a 15 and 24% decrease in weight gain and a 50 and 83% reduction in periuterine fat, respectively. In study 2, mice were fed HFD for 8 wk to induce obesity and the effects of consuming HFD + 0, 2, 5, or 10 ppm DON for 8 wk were then determined. Mice fed 5 or 10 ppm DON exhibited a 16 and 23% weight reduction and a 0 and 40% periuterine fat reduction, respectively. In a follow-up experiment, food consumption was measured prior to and after the transition from HFD to HFD + 10 ppm DON. Exposure to DON was found to lower HFD consumption within 1 d, with significant weight loss in DON-fed mice evident after 6 d. In both studies 1 and 2, consumption of 5 or 10 ppm DON diminished circulating levels of insulin-like growth factor acid-labile subunit. Taken together, DON consumption lowered weight gain and produced weight loss in diet-induced obese mice at higher thresholds than that observed previously in normal B6C3F1 mice.


Toxicological Sciences | 2010

Kinetics of satratoxin g tissue distribution and excretion following intranasal exposure in the mouse.

Chidozie J. Amuzie; Zahidul Islam; Jae Kyung Kim; Ji Hyun Seo; James J. Pestka

Intranasal exposure of mice to satratoxin G (SG), a macrocyclic trichothecene produced by the indoor air mold Stachybotrys chartarum, selectively induces apoptosis in olfactory sensory neurons (OSNs) of the nose and brain. The purpose of this study was to measure the kinetics of distribution and clearance of SG in the mouse. Following intranasal instillation of female C57B16 mice with SG (500 microg/kg bw), the toxin was detectable from 5 to 60 min in blood and plasma, with the highest concentrations, 30 and 19 ng/ml, respectively, being observed at 5 min. SG clearance from plasma was rapid and followed single-compartment kinetics (t(1/2) = 20 min) and differed markedly from that of other tissues. SG concentrations were maximal at 15-30 min in nasal turbinates (480 ng/g), kidney (280 ng/g), lung (250 ng/g), spleen (200 ng/g), liver (140 ng/g), thymus (90 ng/g), heart (70 ng/g), olfactory bulb (14 ng/g), and brain (3 ng/g). The half-lives of SG in the nasal turbinate and thymus were 7.6 and 10.1 h, respectively, whereas in other organs, these ranged from 2.3 to 4.4 h. SG was detectable in feces and urine, but cumulative excretion over 5 days via these routes accounted for less than 0.3% of the total dose administered. Taken together, SG was rapidly taken up from the nose, distributed to tissues involved in respiratory, immune, and neuronal function, and subsequently cleared. However, a significant amount of the toxin was retained in the nasal turbinate, which might contribute to SGs capacity to evoke OSN death.

Collaboration


Dive into the Chidozie J. Amuzie's collaboration.

Top Co-Authors

Avatar

James J. Pestka

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zahidul Islam

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jack R. Harkema

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

A. M. Ulrich

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale R. Romsos

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge