Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiduru Watanabe is active.

Publication


Featured researches published by Chiduru Watanabe.


Biochimica et Biophysica Acta | 2010

An interpretation of positional displacement of the helix12 in nuclear receptors: preexistent swing-up motion triggered by ligand binding.

Chiduru Watanabe; Hirofumi Watanabe; Shigenori Tanaka

Positional displacement of helix12 (H12) in the estrogen receptor alpha, which belongs to the nuclear receptor (NR) superfamily, is studied by the molecular dynamics (MD) simulation and the linear response theory. Tendency of the H12 to swing up upon ligand binding, which is consistent with X-ray structures and earlier MD simulations, is reproduced by the calculation of the conformational fluctuation in apo state and the response to the external perturbation. Our study thus provides an interpretation of the positional change of the H12 such that it is derived by the preexistent swing-up motion where the ligand binding works only as a trigger. Our finding, which illustrates underlying mechanism of the H12 motion, would contribute to finding a way to regulate the transcriptional activity by synthesized ligands because the transcriptional activity of the NR is governed by the position of the H12.


Journal of Physical Chemistry B | 2014

Charge clamps of lysines and hydrogen bonds play key roles in the mechanism to fix helix 12 in the agonist and antagonist positions of estrogen receptor α: intramolecular interactions studied by the ab initio fragment molecular orbital method.

Chiduru Watanabe; Kaori Fukuzawa; Shigenori Tanaka; Sachiko Aida-Hyugaji

The mechanism to fix helix 12 (H12) in the agonist/antagonist position, which is involved in controlling transcriptional activation, of the human estrogen receptor α ligand binding domain (hERαLBD) is studied by using fragment molecular orbital calculations at the Møller-Plesset second-order perturbation levels to analyze inter-fragment interaction energies (IFIEs), electrostatic potentials (ESPs), and atomic charges. The mutually attractive and complementary relationships between H12 and highly conserved Lys529/Lys362 are shown through the IFIEs and ESPs. The highly conserved Lys529 and Lys362 are found to have strong attractive interactions with the anionic residues of H12 in the agonist and antagonist positions, respectively, thus playing roles of charge clamps to fix H12. Additionally, intramolecular interactions between the neutral residues of H12 including the LXXML motif and the other part of hERα are strengthened by the hydrogen bonds and polarization. It is noted that the highly conserved Asp351 forms a hydrogen bond with Leu540 of H12 in the hERα-agonist complex, while it is also involved in stabilization of ligand binding in the hERα-antagonist complex. The charges of residues at the interface between H12 and the other part of hERα approach approximately neutral upon forming the agonist/antagonist binding conformation so as to relax the electrostatic repulsion caused by the negative charges of H12 and the other part of hERα. Our observations would thus provide useful information to control the H12 position for regulation of transcription in hERα and other nuclear receptors.


Journal of Molecular Graphics & Modelling | 2014

Interaction energy analysis on specific binding of influenza virus hemagglutinin to avian and human sialosaccharide receptors: importance of mutation-induced structural change.

Satoshi Anzaki; Chiduru Watanabe; Kaori Fukuzawa; Yuji Mochizuki; Shigenori Tanaka

On the basis of available molecular structures registered in Protein Data Bank, we have theoretically carried out the interaction energy analysis for the complexes of influenza virus hemagglutinin (HA) proteins and sialosaccharide receptor analogs of host cells. Employing the fragment molecular orbital method for quantum-chemical calculations, the differences in magnitude and pattern of the interactions between the amino acid residues of avian-type (H7N3) or human-type (H7N9) HA and each saccharide part of avian or human receptor were studied in order to elucidate the molecular mechanism of avian-to-human infectious transmission of influenza virus. We have thus confirmed quantitatively that the mutations from the avian HA to the human HA significantly strengthened the binding affinity of human HA to human receptor, while retaining the affinity to avian receptor. In addition to direct effects regarding the changes of interactions between the altered residues and the receptors, we have also found the importance of indirect effects in which structural changes caused by the mutations play vital roles to modify the intermolecular interactions.


Molecular Physics | 2015

Hydration effects on enzyme–substrate complex of nylon oligomer hydrolase: inter-fragment interaction energy study by the fragment molecular orbital method

Hiroyuki Ando; Yasuteru Shigeta; Takeshi Baba; Chiduru Watanabe; Yoshio Okiyama; Yuji Mochizuki; Masayoshi Nakano

Fragment molecular orbital calculations were successfully applied to a nylon oligomer hydrolase, NylB, to investigate the hydration effects on an enzyme–substrate binding structure. Statistically corrected inter-fragment interaction energy analyses were performed on this system to quantitatively characterise the interactions between the substrate, 6-aminohexanoate linear dimer (ALD), and the amino acid residues, such as Asp181, Ser112, and Ile 345, which are regarded as important for enzyme–substrate complex formation by NylB. We found that the direct interaction between ALD and NylB is weakened by hydration, because water molecules cause charge translation or polarisation of ALD or each amino acid residue. However, including the interaction energy between ALD and water molecules greatly stabilises this complex. These results indicate the importance of the hydration effects in enzyme–substrate complex formation.


Journal of Molecular Graphics & Modelling | 2016

Hydration of ligands of influenza virus neuraminidase studied by the fragment molecular orbital method.

Kana Tokuda; Chiduru Watanabe; Yoshio Okiyama; Yuji Mochizuki; Kaori Fukuzawa; Yuto Komeiji

The fragment molecular orbital (FMO) method was applied to quantum chemical calculations of neuramic acid, the natural substrate of the influenza virus neuraminidase, and two of its competitive inhibitors, Oseltamivir (Tamiful(®)) and Zanamivir (Relenza(®)), to investigate their hydrated structures and energetics. Each of the three ligands was immersed in an explicit water solvent, geometry-optimized by classical MM and QM/MM methods, and subjected to FMO calculations with 2-, 3-, and 4-body corrections under several fragmentation options. The important findings were that QM/MM optimization was preferable to obtain reliable hydrated structures of the ligands, that the 3-body correction was important for quantitative evaluation of the solvation energy, and that the dehydration effect was most remarkable near the hydrophobic sections of the ligands. In addition, the hydration energy calculated by the explicit solvent was compared with the hydration free energy calculated by the implicit solvent via the Poisson-Boltzmann equation, and the two showed a fairly good correlation. These findings will serve as useful information for rapid drug design.


Journal of Physical Chemistry B | 2018

Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson–Boltzmann Equation: Implementation and DNA Study

Yoshio Okiyama; Tatsuya Nakano; Chiduru Watanabe; Kaori Fukuzawa; Yuji Mochizuki; Shigenori Tanaka

In this study, an ab initio fragment molecular orbital (FMO) methodology was developed to evaluate the solvent effects on electrostatic interactions, which make a significant contribution to the physical and chemical processes occurring in biological systems. Here, a fully polarizable solute consisting of the FMO electron density was electrostatically coupled with an implicit solvent based on the Poisson-Boltzmann (PB) equation; in addition, the nonpolar contributions empirically obtained from the molecular surface area (SA) were added. Interaction analysis considering solvent-screening and dispersion effects is now available as a powerful tool to determine the local stabilities inside solvated biomolecules. This methodology is applied to a deoxyribonucleic acid (DNA) duplex known as the Dickerson dodecamer. We found that excessively large electrostatic interactions inside the duplex are effectively damped by the screening, and the frontier molecular orbital energies are also successfully lowered. These observations indicate the stability of highly charged DNA duplexes in solution. Moreover, the solvation free energies in the implicit model show fairly good agreement with those in the explicit model while avoiding the costly statistical sampling of the electrolyte distribution. Consequently, our FMO-PBSA approach could yield new insights into biological phenomena and pharmacological problems via this ab initio methodology.


Computational and structural biotechnology journal | 2018

Towards good correlation between fragment molecular orbital interaction energies and experimental IC50 for ligand binding: A case study of p38 MAP kinase

Yinglei Sheng; Hirofumi Watanabe; Keiya Maruyama; Chiduru Watanabe; Yoshio Okiyama; Teruki Honma; Kaori Fukuzawa; Shigenori Tanaka

We describe several procedures for the preprocessing of fragment molecular orbital (FMO) calculations on p38 mitogen-activated protein (MAP) kinase and discuss the influence of the procedures on the protein–ligand interaction energies represented by inter-fragment interaction energies (IFIEs). The correlation between the summation of IFIEs for a ligand and amino acid residues of protein (IFIE-sum) and experimental affinity values (IC50) was poor when considered for the whole set of protein–ligand complexes. To improve the correlation for prediction of ligand binding affinity, we carefully classified data set by the ligand charge, the DFG-loop state (DFG-in/out loop), which is characteristic of kinase, and the scaffold of ligand. The correlation between IFIE-sums and the activity values was examined using the classified data set. As a result, it was confirmed that there was a selected data set that showed good correlation between IFIE-sum and activity value by appropriate classification. In addition, we found that the differences in protonation and hydrogen orientation caused by subtle differences in preprocessing led to a relatively large difference in IFIE values. Further, we also examined the effect of structure optimization with different force fields. It was confirmed that the difference in the force field had no significant effect on IFIE-sum. From the viewpoint of drug design using FMO calculations, various investigations on IFIE-sum in this research, such as those regarding several classifications of data set and the different procedures of structural preparation, would be expected to provide useful knowledge for improvement of prediction ability about the ligand binding affinity.


Bioorganic & Medicinal Chemistry | 2018

Characterization of crystal water molecules in a high-affinity inhibitor and hematopoietic prostaglandin D synthase complex by interaction energy studies.

Daisuke Takaya; Koji Inaka; Akifumi Omura; Kenji Takenuki; Masashi Kawanishi; Yukako Yabuki; Yukari Nakagawa; Keiko Tsuganezawa; Naoko Ogawa; Chiduru Watanabe; Teruki Honma; Kosuke Aritake; Yoshihiro Urade; Mikako Shirouzu; Akiko Tanaka

Hematopoietic prostaglandin D synthase (H-PGDS) is one of the two enzymes that catalyze prostaglandin D2 synthesis and a potential therapeutic target of allergic and inflammatory responses. To reveal key molecular interactions between a high-affinity ligand and H-PGDS, we designed and synthesized a potent new inhibitor (KD: 0.14 nM), determined the crystal structure in complex with human H-PGDS, and quantitatively analyzed the ligand-protein interactions by the fragment molecular orbital calculation method. In the cavity, 10 water molecules were identified, and the interaction energy calculation indicated their stable binding to the surface amino acids in the cavity. Among them, 6 water molecules locating from the deep inner cavity to the peripheral part of the cavity contributed directly to the ligand binding by forming hydrogen bonding interactions. Arg12, Gly13, Gln36, Asp96, Trp104, Lys112 and an essential co-factor glutathione also had strong interactions with the ligand. A strong repulsive interaction between Leu199 and the ligand was canceled out by forming a hydrogen bonding network with the adjacent conserved water molecule. Our quantitative studies including crystal water molecules explained that compounds with an elongated backbone structure to fit from the deep inner cavity to the peripheral part of the cavity would have strong affinity to human H-PGDS.


Journal of Chemical Information and Modeling | 2017

Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson–Boltzmann Surface Area (FMO+MM-PBSA) Approach

Chiduru Watanabe; Hirofumi Watanabe; Kaori Fukuzawa; Lorien J. Parker; Yoshio Okiyama; Hitomi Yuki; Shigeyuki Yokoyama; Hirofumi Nakano; Shigenori Tanaka; Teruki Honma

Significant activity changes due to small structural changes (i.e., activity cliffs) of serine/threonine kinase Pim1 inhibitors were studied theoretically using the fragment molecular orbital method with molecular mechanics Poisson-Boltzmann surface area (FMO+MM-PBSA) approach. This methodology enables quantum-chemical calculations for large biomolecules with solvation. In the course of drug discovery targeting Pim1, six benzofuranone-class inhibitors were found to differ only in the position of the indole-ring nitrogen atom. By comparing the various qualities of complex structures based on X-ray, classical molecular mechanics (MM)-optimized, and quantum/molecular mechanics (QM/MM)-optimized structures, we found that the QM/MM-optimized structures provided the best correlation (R2 = 0.85) between pIC50 and the calculated FMO+MM-PBSA binding energy. Combining the classical solvation energy with the QM binding energy was important to increase the correlation. In addition, decomposition of the interaction energy into various physicochemical components by pair interaction energy decomposition analysis suggested that CH-π and electrostatic interactions mainly caused the activity differences.


Chemical Physics Letters | 2012

Development of the four-body corrected fragment molecular orbital (FMO4) method

Tatsuya Nakano; Yuji Mochizuki; Katsumi Yamashita; Chiduru Watanabe; Kaori Fukuzawa; Katsunori Segawa; Yoshio Okiyama; Takayuki Tsukamoto; Shigenori Tanaka

Collaboration


Dive into the Chiduru Watanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuto Komeiji

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hirofumi Watanabe

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge