Chieh-Yu Lin
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chieh-Yu Lin.
Nature | 2014
Pei Han; Wei Li; Chiou Hong Lin; Jin Yang; Ching Shang; Sylvia T. Nurnberg; Kevin K. Jin; Weihong Xu; Chieh-Yu Lin; Chien Jung Lin; Yiqin Xiong; Huan Chieh Chien; Bin Zhou; Euan A. Ashley; Daniel Bernstein; Peng Sheng Chen; Huei sheng Vincent Chen; Thomas Quertermous; Ching Pin Chang
The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodelling. An estimated 70% of mouse genes undergo antisense transcription, including myosin heavy chain 7 (Myh7), which encodes molecular motor proteins for heart contraction. Here we identify a cluster of lncRNA transcripts from Myh7 loci and demonstrate a new lncRNA–chromatin mechanism for heart failure. In mice, these transcripts, which we named myosin heavy-chain-associated RNA transcripts (Myheart, or Mhrt), are cardiac-specific and abundant in adult hearts. Pathological stress activates the Brg1–Hdac–Parp chromatin repressor complex to inhibit Mhrt transcription in the heart. Such stress-induced Mhrt repression is essential for cardiomyopathy to develop: restoring Mhrt to the pre-stress level protects the heart from hypertrophy and failure. Mhrt antagonizes the function of Brg1, a chromatin-remodelling factor that is activated by stress to trigger aberrant gene expression and cardiac myopathy. Mhrt prevents Brg1 from recognizing its genomic DNA targets, thus inhibiting chromatin targeting and gene regulation by Brg1. It does so by binding to the helicase domain of Brg1, a domain that is crucial for tethering Brg1 to chromatinized DNA targets. Brg1 helicase has dual nucleic-acid-binding specificities: it is capable of binding lncRNA (Mhrt) and chromatinized—but not naked—DNA. This dual-binding feature of helicase enables a competitive inhibition mechanism by which Mhrt sequesters Brg1 from its genomic DNA targets to prevent chromatin remodelling. A Mhrt–Brg1 feedback circuit is thus crucial for heart function. Human MHRT also originates from MYH7 loci and is repressed in various types of myopathic hearts, suggesting a conserved lncRNA mechanism in human cardiomyopathy. Our studies identify a cardioprotective lncRNA, define a new targeting mechanism for ATP-dependent chromatin-remodelling factors, and establish a new paradigm for lncRNA–chromatin interaction.
Development | 2012
Chien Jung Lin; Chieh-Yu Lin; Chen Hao Chen; Bin Zhou; Ching Pin Chang
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Nature | 2014
Jeanine L. Van Nostrand; Colleen A. Brady; Heiyoun Jung; Daniel R. Fuentes; Margaret M. Kozak; Thomas M. Johnson; Chieh-Yu Lin; Chien Jung Lin; Donald L. Swiderski; Hannes Vogel; Jonathan A. Bernstein; Tania Attié-Bitach; Ching Pin Chang; Joanna Wysocka; Donna M. Martin; Laura D. Attardi
CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70–90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p5325,26,53,54), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p5325,26,53,54 mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p5325,26,53,54/− embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Wei Li; Yiqin Xiong; Ching Shang; Karen Y. Twu; Calvin T. Hang; Jin Yang; Pei Han; Chieh-Yu Lin; Chien Jung Lin; Feng-Chiao Tsai; Kryn Stankunas; Tobias Meyer; Daniel Bernstein; Minggui Pan; Ching Pin Chang
Development of the cerebral vessels, pharyngeal arch arteries (PAAs). and cardiac outflow tract (OFT) requires multipotent neural crest cells (NCCs) that migrate from the neural tube to target tissue destinations. Little is known about how mammalian NCC development is orchestrated by gene programming at the chromatin level, however. Here we show that Brahma-related gene 1 (Brg1), an ATPase subunit of the Brg1/Brahma-associated factor (BAF) chromatin-remodeling complex, is required in NCCs to direct cardiovascular development. Mouse embryos lacking Brg1 in NCCs display immature cerebral vessels, aberrant PAA patterning, and shortened OFT. Brg1 suppresses an apoptosis factor, Apoptosis signal-regulating kinase 1 (Ask1), and a cell cycle inhibitor, p21cip1, to inhibit apoptosis and promote proliferation of NCCs, thereby maintaining a multipotent cell reservoir at the neural crest. Brg1 also supports Myosin heavy chain 11 (Myh11) expression to allow NCCs to develop into mature vascular smooth muscle cells of cerebral vessels. Within NCCs, Brg1 partners with chromatin remodeler Chromodomain-helicase-DNA-binding protein 7 (Chd7) on the PlexinA2 promoter to activate PlexinA2, which encodes a receptor for semaphorin to guide NCCs into the OFT. Our findings reveal an important role for Brg1 and its downstream pathways in the survival, differentiation, and migration of the multipotent NCCs critical for mammalian cardiovascular development.
Journal of Molecular and Cellular Cardiology | 2012
Chieh-Yu Lin; Chien Jung Lin; Chen Hao Chen; Richard M. Chen; Bin Zhou; Ching Pin Chang
Semilunar valve malformations are common human congenital heart defects. Bicuspid aortic valves occur in 2-3% of the population, and pulmonic valve stenosis constitutes 10% of all congenital heart disease in adults (Brickner et al., 2000) [1]. Semilunar valve defects cause valve regurgitation, stenosis, or calcification, leading to endocarditis or congestive heart failure. These complications often require prolonged medical treatment or surgical intervention. Despite the medical importance of valve disease, the regulatory pathways governing semilunar valve development are not entirely clear. In this report we investigated the spatiotemporal role of calcineurin/Nfatc1 signaling in semilunar valve development. We generated conditional knockout mice with calcineurin gene disrupted in various tissues during semilunar valve development. Our studies showed that calcineurin/Nfatc1 pathway signals in the secondary heart field (SHF) but not in the outflow tract myocardium or neural crest cells to regulate semilunar valve morphogenesis. Without SHF calcineurin/Nfatc1 signaling, the conal endocardial cushions-the site of prospective semilunar valve formation--first develop and then regress due to apoptosis, resulting in a striking phenotype with complete absence of the aortic and pulmonic valves, severe valve regurgitation, and perinatal lethality. This role of calcineurin/Nfatc1 signaling in the SHF is different from the requirement of calcineurin/Nfatc1 in the endocardium for semilunar valve formation (Chang et al., 2004) [2], indicating that calcineurin/Nfatc1 signals in multiple tissues to organize semilunar valve development. Also, our studies suggest distinct mechanisms of calcineurin/Nfat signaling for semilunar and atrioventricular valve morphogenesis. Therefore, we demonstrate a novel developmental mechanism in which calcineurin signals through Nfatc1 in the secondary heart field to promote semilunar valve morphogenesis, revealing a new supportive role of the secondary heart field for semilunar valve formation.
Histopathology | 2016
Chieh-Yu Lin; Keegan Q Barry-Holson; Kimberly H. Allison
Since the discovery of breast cancer stem cells (BCSCs) more than 10 years ago, a body of exciting research has developed. The intrinsic properties of BCSCs, including self‐renewal and the ability to give rise to heterogeneous progeny, make BCSCs a likely source of tumour initiation, heterogeneity, progression and metastasis. BCSCs are also inherently resistant to conventional therapies and are therefore thought to contribute to disease recurrence. In this review, we will focus on both the challenges and recent advances in the characterization of BCSCs with respect to phenotype, molecular signature and their role in the behaviour of the different molecular subtypes of breast cancer. Of most importance is our ability to translate our growing knowledge base into the development of targeted therapies with the goal of reducing adverse outcomes in breast cancer patients.
Cardiovascular Research | 2014
Jin Yang; Miriam Zeini; Chieh-Yu Lin; Chien Jung Lin; Yiqin Xiong; Ching Shang; Pei Han; Wei Li; Thomas Quertermous; Bin Zhou; Ching Pin Chang
AIMS Congenital coronary artery anomalies produce serious events that include syncope, arrhythmias, myocardial infarction, or sudden death. Studying the mechanism of coronary development will contribute to the understanding of the disease and help design new diagnostic or therapeutic strategies. Here, we characterized a new calcineurin-NFAT signalling which specifically functions in the epicardium to regulate the development of smooth muscle wall of the coronary arteries. METHODS AND RESULTS Using tissue-specific gene deletion, we found that calcineurin-NFAT signals in the embryonic epicardium to direct coronary smooth muscle cell development. The smooth muscle wall of coronary arteries fails to mature in mice with epicardial deletion of calcineurin B1 (Cnb1), and accordingly these mutant mice develop cardiac dysfunction with reduced exercise capacity. Inhibition of calcineurin at various developmental windows shows that calcineurin-NFAT signals within a narrow time window at embryonic Day 12.5-13.5 to regulate coronary smooth muscle cell development. Within the epicardium, NFAT transcriptionally activates the expression of Smad2, whose gene product is critical for transducing transforming growth factor β (TGFβ)-Alk5 signalling to control coronary development. CONCLUSION Our findings demonstrate new spatiotemporal and molecular actions of calcineurin-NFAT that dictate coronary arterial wall development and a new mechanism by which calcineurin-NFAT integrates with TGFβ signalling during embryonic development.
Genesis | 2014
Wei Li; Chieh-Yu Lin; Ching Shang; Pei Han; Yiqin Xiong; Chien Jung Lin; Jing Yang; Licia Selleri; Ching Pin Chang
Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung. genesis 52:399–407, 2014.
Matrix Biology | 2018
Chien-Jung Lin; Chieh-Yu Lin; Nathan O. Stitziel
Aortic aneurysms are morbid conditions that can lead to rupture or dissection and are categorized as thoracic (TAA) or abdominal aortic aneurysms (AAA) depending on their location. While AAA shares overlapping risk factors with atherosclerotic cardiovascular disease, TAA exhibits strong heritability. Human genetic studies in the past two decades have successfully identified numerous genes involved in both familial and sporadic forms of aortic aneurysm. In this review we will discuss the genetic basis of aortic aneurysm, focusing on the extracellular matrix and how insights from these studies have informed our understanding of human biology and disease pathogenesis.
American Journal of Clinical Pathology | 2018
Chieh-Yu Lin; David Levy; John P. Higgins; Christian A. Kunder; Chia-Sui Kao
Objectives To report the presence and evaluate the frequency of plasma cell neoplasms within adrenal myelolipomas. Methods Adrenal myelolipomas within our institution were reviewed for the presence of hematologic neoplasia, and a review of the literature was performed. Results Two (9%) of 23 adrenal myelolipomas were involved by plasma cell myeloma. The patients were 71 and 81 years old, one woman and one man, with tumors measuring 7 cm and 8.5 cm, respectively. Both tumors contained large aggregates of dysplastic plasma cells occupying at least one ×10 field and demonstrated light chain restriction. Neither had an established diagnosis of plasma cell neoplasm previously. After receiving therapy, one patient exhibited a stable clinical course 1 year after diagnosis while the other died of disease 3 years later. Conclusions We report the first two cases of adrenal myelolipoma involved by plasma cell myeloma, a rare and subtle finding that has significant clinical implications.