Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chien-An Andy Hu is active.

Publication


Featured researches published by Chien-An Andy Hu.


Journal of Biological Chemistry | 2008

Apolipoprotein L1, a Novel Bcl-2 Homology Domain 3-only Lipid-binding Protein, Induces Autophagic Cell Death

Guanghua Wan; Siqin Zhaorigetu; Zhihe Liu; Ramesh R. Kaini; Zeyu Jiang; Chien-An Andy Hu

The Bcl-2 family proteins are important regulators of type I programmed cell death apoptosis; however, their role in autophagic cell death (AuCD) or type II programmed cell death is still largely unknown. Here we report the cloning and characterization of a novel Bcl-2 homology domain 3 (BH3)-only protein, apolipoprotein L1 (apoL1), that, when overexpressed and accumulated intracellularly, induces AuCD in cells as characterized by the increasing formation of autophagic vacuoles and activating the translocation of LC3-II from the cytosol to the autophagic vacuoles. Wortmannin and 3-methyladenine, inhibitors of class III phosphatidylinostol 3-kinase and, subsequently, autophagy, blocked apoL1-induced AuCD. In addition, apoL1 failed to induce AuCD in autophagy-deficient ATG5-/- and ATG7-/- mouse embryonic fibroblast cells, suggesting that apoL1-induced cell death is indeed autophagy-dependent. Furthermore, a BH3 domain deletion construct of apoL1 failed to induce AuCD, demonstrating that apoL1 is a bona fide BH3-only pro-death protein. Moreover, we showed that apoL1 is inducible by p53 in p53-induced cell death and is a lipid-binding protein with high affinity for phosphatidic acid (PA) and cardiolipin (CL). Previously, it has been shown that PA directly interacted with mammalian target of rapamycin and positively regulated the ability of mammalian target of rapamycin to activate downstream effectors. In addition, CL has been shown to activate mitochondria-mediated apoptosis. Sequestering of PA and CL with apoL1 may alter the homeostasis between survival and death leading to AuCD. To our knowledge, this is the first BH3-only protein with lipid binding activity that, when overproduced intracellularly, induces AuCD.


Oncogene | 2006

Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling

Y Liu; Gregory L. Borchert; Surazynski A; Chien-An Andy Hu; Phang Jm

Proline oxidase (POX), often considered a ‘housekeeping enzyme’ might play an important role in apoptosis. We have shown that POX generated proline-dependent reactive oxygen species (ROS), specifically superoxide radicals, and induced apoptosis through the mitochondrial (intrinsic) pathway. In our current report, we used DLD-1 colorectal cancer cells stably transfected with the POX gene under the control of a tetracycline-inducible promoter and found POX-stimulated expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), DR5 and cleavage of caspase-8. Importantly, apoptosis measured by flow cytometry was partially inhibited by Z-IETD-FMK, a specific inhibitor of caspase-8. These findings suggest that the extrinsic (death receptor) pathway also is activated by POX. Furthermore, the mechanism of this effect on the extrinsic pathway, specifically, the induction of TRAIL by POX, may be mediated by NFAT transcription factors. Additionally, POX expression also dramatically decreased phosphorylation of MEK and ERK, and the decrease was partially reversed by expression of manganese superoxide dismutase (MnSOD). Overexpression of constitutively active form of MEK, acMEK, partially blocked POX-induced apoptosis. These findings suggest the involvement of MEK/ERK signaling and further confirm the role of ROS/superoxides in POX-induced apoptosis. Combined with previously published data, we conclude that POX may induce apoptosis through both intrinsic and extrinsic pathways and is involved in nuclear factor of activated T cells (NFAT) signaling and regulation of the MEK/ERK pathway. It is suggested that, as a nutrition factor, POX may modulate apoptosis signals induced by p53 or other anti-cancer agents and enhance apoptosis in stress situations.


Autophagy | 2008

ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death

Siqin Zhaorigetu; Guanghua Wan; Ramesh R. Kaini; Zeyu Jiang; Chien-An Andy Hu

We recently reported the identification and characterization of a novel BH3-only pro-death protein, apolipoprotein L1 (ApoL1), that, when overexpressed, induces autophagic cell death (ACD) in a variety of cells, including those originated from normal and cancerous tissues. ApoL1 failed to induce ACD in autophagy-deficient Atg5-/- and Atg7-/- MEF cells, suggesting that ApoL1-induced cell death is indeed autophagy-dependent. In addition, a BH3 domain deletion allele of ApoL1 was unable to induce ACD, demonstrating that ApoL1 is a bona fide BH3-only pro-death protein. To further investigate regulation of ApoL1 expression, we showed that ApoL1 is inducible by interferon-γ and tumor necrosis factor-α in human umbilical vein endothelial cells, suggesting that ApoL1 may play a role in cytokine-induced inflammatory response. Moreover, we observed that ApoL1 is a lipid-binding protein with high affinity for phosphatidic acid and cardiolipin and less affinity for various phosphoinositides. Functional genomics analysis identified 5 nonsynonymous single nucleotide polymorphisms (NSNPs) in the coding exons of the human ApoL1 structural gene– all the 5 NSNPs may cause deleterious alteration of ApoL1 activity. Finally, we discuss the link between ApoL1 and various human diseases. Addendum to: Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem 2008; 283:21540-49.


Amino Acids | 2008

Human Δ1-pyrroline-5-carboxylate synthase: function and regulation

Chien-An Andy Hu; S. Khalil; Siqin Zhaorigetu; Z. Liu; M. Tyler; Guanghua Wan; David Valle

Mammalian Δ1-pyrroline-5-carboxylate synthase (P5CS) is a bifunctional ATP- and NAD(P)H-dependent mitochondrial enzyme that catalyzes the coupled phosphorylation and reduction-conversion of l-glutamate to P5C, a pivotal step in the biosynthesis of l-proline, l-ornithine and l-arginine. Previously, we reported cloning and characterization of two P5CS transcript variants generated by exon sliding that encode two protein isoforms differing only by a two amino acid-insert at the N-terminus of the γ-glutamyl kinase active site. The short form (P5CS.short) is highly expressed in the gut and is inhibited by ornithine. In contrast, the long form (P5CS.long) is expressed ubiquitously and is insensitive to ornithine. Interestingly, we found that all the established human cell lines we have studied expressed P5CS.long but not P5CS.short. In addition, expression of P5CS.long can be modulated by hormones: downregulation by hydrocortisone and dexamethasone and upregulation by estradiol, for example. Using a quantitative proteomic approach, we showed that P5CS.long is upregulated by p53 in p53-induced apoptosis in DLD-1 colorectal cancer cells. Functional genomic analysis confirmed that there are two p53-binding consensus sequences in the promoter region and in the intron 1 of the human P5CS gene. Interestingly, overexpression of P5CS by adenoviruses harboring P5CS.long or P5CS.short in various cell types has no effect on cell growth or survival. It would be of importance to further investigate the role of P5CS as a p53 downstream effector and how P5CS.short expression is regulated by hormones and factors of alternative splicing in cells isolated from model animals.


Nature Medicine | 2017

Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice

Pazit Beckerman; Jing Bi-Karchin; Ae Seo Deok Park; Chengxiang Qiu; Patrick D. Dummer; Irfana Soomro; Carine M. Boustany-Kari; Steven S. Pullen; Jeffrey H. Miner; Chien-An Andy Hu; Tibor Rohacs; Kazunori Inoue; Shuta Ishibe; Moin A. Saleem; Matthew Palmer; Ana Maria Cuervo; Jeffrey B. Kopp; Katalin Susztak

African Americans have a heightened risk of developing chronic and end-stage kidney disease, an association that is largely attributed to two common genetic variants, termed G1 and G2, in the APOL1 gene. Direct evidence demonstrating that these APOL1 risk alleles are pathogenic is still lacking because the APOL1 gene is present in only some primates and humans; thus it has been challenging to demonstrate experimental proof of causality of these risk alleles for renal disease. Here we generated mice with podocyte-specific inducible expression of the APOL1 reference allele (termed G0) or each of the risk-conferring alleles (G1 or G2). We show that mice with podocyte-specific expression of either APOL1 risk allele, but not of the G0 allele, develop functional (albuminuria and azotemia), structural (foot-process effacement and glomerulosclerosis) and molecular (gene-expression) changes that closely resemble human kidney disease. Disease development was cell-type specific and likely reversible, and the severity correlated with the level of expression of the risk allele. We further found that expression of the risk-variant APOL1 alleles interferes with endosomal trafficking and blocks autophagic flux, which ultimately leads to inflammatory-mediated podocyte death and glomerular scarring. In summary, this is the first demonstration that the expression of APOL1 risk alleles is causal for altered podocyte function and glomerular disease in vivo.


Amino Acids | 2008

Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes

Chien-An Andy Hu; D. Bart Williams; Siqin Zhaorigetu; Shadi Khalil; Guanghua Wan; David Valle

Proline metabolism in mammals involves two other amino acids, glutamate and ornithine, and five enzymatic activities, Δ1-pyrroline-5-carboxylate (P5C) reductase (P5CR), proline oxidase, P5C dehydrogenase, P5C synthase and ornithine-δ-aminotransferase (OAT). With the exception of OAT, which catalyzes a reversible reaction, the other four enzymes are unidirectional, suggesting that proline metabolism is purpose-driven, tightly regulated, and compartmentalized. In addition, this tri-amino-acid system also links with three other pivotal metabolic systems, namely the TCA cycle, urea cycle, and pentose phosphate pathway. Abnormalities in proline metabolism are relevant in several diseases: six monogenic inborn errors involving metabolism and/or transport of proline and its immediate metabolites have been described. Recent advances in the Human Genome Project, in silico database mining techniques, and research in dissecting the molecular basis of proline metabolism prompted us to utilize functional genomic approaches to analyze human genes which encode proline metabolic enzymes in the context of gene structure, regulation of gene expression, mRNA variants, protein isoforms, and single nucleotide polymorphisms.


Journal of Biological Chemistry | 2015

Autophagy Enhances Intestinal Epithelial Tight Junction Barrier Function by Targeting Claudin-2 Protein Degradation

Prashant K. Nighot; Chien-An Andy Hu; Thomas Y. Ma

Background: How autophagy, a cell survival mechanism, regulates intestinal epithelial tight junction barrier or paracellular permeability is unknown. Results: Autophagy reduces the paracellular permeability of small solutes and ions via degradation of the pore-forming tight junction protein claudin-2. Conclusion: Autophagy enhances tight junction barrier function by targeting claudin-2. Significance: This is the first report showing autophagy regulation of the intestinal tight junction barrier. Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2.


Journal of Biological Chemistry | 2011

Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells.

Siqin Zhaorigetu; Zhaoqing Yang; Ian Toma; Timothy A. McCaffrey; Chien-An Andy Hu

Inflammatory cytokine-regulated apoptosis and autophagy play pivotal roles in plaque rupture and thrombosis of atherosclerotic lesions. However, the molecular interplay between apoptosis and autophagy in vascular cells has not been investigated. Our prior study showed that human apolipoprotein L6 (ApoL6), a pro-apoptotic BH3-only member of the Bcl-2 family, was one of the downstream targets of interferon-γ (INFγ), which sensitizes atherosclerotic lesion-derived cells (LDCs) to Fas-induced apoptosis. To investigate whether ApoL6 plays a causal role in atherosclerotic apoptosis and autophagy, in this study, we demonstrate that IFNγ treatment itself strongly induces ApoL6, and ApoL6 is highly expressed and partially co-localized with activated caspase 3 in activated smooth muscle cells in atherosclerotic lesions. In addition, overexpression of ApoL6 promotes reactive oxygen species (ROS) generation, caspase activation, and subsequent apoptosis, which can be blocked by pan caspase inhibitor and ROS scavenger. Knockdown of ApoL6 expression by siApoL6 suppresses INFγ- and Fas-mediated apoptosis. Further, ApoL6 binds Bcl-XL, one of the most abundant anti-death proteins in LDCs. Interestingly, forced ApoL6 expression in LDCs induces degradation of Beclin 1, accumulation of p62, and subsequent attenuation of LC3-II formation and translocation and thus autophagy, whereas siApoL6 treatment reverts the phenotype. Taken together, our results suggest that ApoL6 regulates both apoptosis and autophagy in SMCs. IFNγ-initiated, ApoL6-induced apoptosis in vascular cells may be an important factor causing plaque instability and a potential therapeutic target for treating atherosclerosis and cardiovascular disease.


Cytokine & Growth Factor Reviews | 2017

Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue

Fengna Li; Yinghui Li; Yehui Duan; Chien-An Andy Hu; Yulong Tang; Yulong Yin

Skeletal muscle and adipose tissue are the two largest organs in the body. Skeletal muscle is an effector organ, and adipose tissue is an organ that stores energy; in addition, they are endocrine organs that secrete cytokines, namely myokines and adipokines, respectively. Myokines consist of myostatin, interleukin (IL)-8, IL-15, irisin, fibroblast growth factor 21, and myonectin; adipokines include leptin, adiponectin, resistin, chemerin, and visfatin. Furthermore, certain cytokines, such as IL-6 and tumor necrosis factor-α, are released by both skeletal muscle and adipose tissue and exhibit a bioactive effect; thus, they are called adipo-myokines. Recently, novel myokines or adipokines were identified through the secretomic technique, which has expanded our knowledge on the previously unknown functions of skeletal muscle and adipose tissue and provide a new avenue of investigation for obesity treatment or animal production. This review focuses on the roles of and crosstalk between myokines and adipokines in skeletal muscle and adipose tissue that modulate the molecular events in the metabolic homeostasis of the whole body.


American Journal of Roentgenology | 2015

Iron-Based Superparamagnetic Nanoparticle Contrast Agents for MRI of Infection and Inflammation

Alexander J. Neuwelt; Navneet Sidhu; Chien-An Andy Hu; Gary Mlady; Steven C. Eberhardt; Laurel O. Sillerud

OBJECTIVE. In this article, we summarize the progress to date on the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for MRI of inflammatory processes. CONCLUSION. Phagocytosis by macrophages of injected SPIONs results in a prolonged shortening of both T2 and T2* leading to hypointensity of macrophage-infiltrated tissues in contrast-enhanced MR images. SPIONs as contrast agents are therefore useful for the in vivo MRI detection of macrophage infiltration, and there is substantial research and clinical interest in the use of SPION-based contrast agents for MRI of infection and inflammation. This technique has been used to identify active infection in patients with septic arthritis and osteomyelitis; importantly, the MRI signal intensity of the tissue has been found to return to its unenhanced value on successful treatment of the infection. In SPION contrast-enhanced MRI of vascular inflammation, animal studies have shown decreased macrophage uptake in atherosclerotic plaques after treatment with statin drugs. Human studies have shown that both coronary and carotid plaques that take up SPIONs are more prone to rupture and that abdominal aneurysms with increased SPION uptake are more likely to grow. Studies of patients with multiple sclerosis suggest that MRI using SPIONs may have increased sensitivity over gadolinium for plaque detection. Finally, SPIONs have enabled the tracking and imaging of transplanted stem cells in a recipient host.

Collaboration


Dive into the Chien-An Andy Hu's collaboration.

Top Co-Authors

Avatar

Yulong Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongqing Hou

Wuhan Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiuying Wang

Wuhan Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Yulan Liu

Wuhan Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge