Chien-Han Kao
Kaohsiung Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chien-Han Kao.
Cancer Gene Therapy | 2008
Chiu Min Cheng; Y. L. Lu; Kuo-Hsiang Chuang; W. C. Hung; Jentaie Shiea; Y. C. Su; Chien-Han Kao; Bing-Mae Chen; Steve R. Roffler; Tian-Lu Cheng
Increasing the specificity of chemotherapy may improve the efficacy of cancer treatment. Toward this aim, we developed a strain of bacteria to express enzymes for selective prodrug activation and non-invasive imaging in tumors. β-glucuronidase and the luxCDABE gene cluster were expressed in the DH5α strain of Escherichia coli to generate DH5α-lux/βG. These bacteria emitted light for imaging and hydrolyzed the glucuronide prodrug 9ACG to the topoisomerase I inhibitor 9-aminocamptothecin (9AC). By optical imaging, colony-forming units (CFUs) and staining for βG activity, we found that DH5α-lux/βG preferentially localized and replicated within CL1-5 human lung tumors in mice. The intensity of luminescence, CFU and βG activity increased with time, indicating bacterial replication occurred in tumors. In comparison with DH5α-lux/βG, 9AC or 9ACG treatment, combined systemic administration of DH5α-lux/βG followed by 9ACG prodrug treatment significantly (P<0.005) delayed the growth of CL1-5 tumors. Our results demonstrate that prodrug-activating bacteria may be useful for selective cancer chemotherapy.
Journal of the American Chemical Society | 2012
Ta-Chun Cheng; Steve R. Roffler; Shey-Cherng Tzou; Kuo-Hsiang Chuang; Yu-Cheng Su; Chih-Hung Chuang; Chien-Han Kao; Chien-Shu Chen; I-Hong Harn; Kuan-Yi Liu; Tian-Lu Cheng; Yu-Ling Leu
β-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of β-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of β-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. β-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near β-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified β-glucuronidase or β-glucuronidase-expressing CT26 cells (CT26/mβG) but not on bovine serum albumin or non-β-glucuronidase-expressing CT26 cells used as controls. β-glucuronidase-activated FITC-TrapG did not interfere with β-glucuronidase activity and could label bystander proteins near β-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mβG tumors, but only NIR-TrapG could image CT26/mβG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing β-glucuronidase activity in vivo.
Analytical Chemistry | 2010
Kuo-Hsiang Chuang; Shey-Cherng Tzou; Ta-Chun Cheng; Chien-Han Kao; Wei-Lung Tseng; Jentaie Shiea; Kuang-Wen Liao; Yun-Ming Wang; Ya-Chen Chang; Bo-Jyun Huang; Chang-Jer Wu; Pei-Yu Chu; Steve R. Roffler; Tian-Lu Cheng
Poly(ethylene glycol) (PEG) is increasingly used in clinical and experimental medicine. However, quantification of PEG and PEGylated small molecules remains laborious and unsatisfactory. In this report, we stably expressed a functional anti-PEG antibody on the surface of BALB 3T3 cells (3T3/alphaPEG cells) to develop a competitive enzyme-linked immunosorbent assay (ELISA) for PEG quantification. The alphaPEG cell-coated plate bound biotinylated PEG(5K) (CH(3)-PEG(5K)-biotin) and CH(3)-PEG(5K)-(131)I more effectively than did a traditional anti-PEG antibody-coated plate. Competitive binding between PEG (2, 5, 10, or 20 kDa) and a known amount of CH(3)-PEG(5K)-biotin allowed construction of a reproducible competition curve. The alphaPEG cell-based competition ELISA measured small molecules derivatized by PEG(2K), PEG(5K), PEG(10K), PEG(20K), and PEG(5K) at concentrations as low as 58.6, 14.6, 3.7, 3.7, and 14.6 ng/mL, respectively. Notably, the presence of serum or bovine serum albumin enhanced PEG measurement by the alphaPEG cell-based competition ELISA. Finally, we show here that the alphaPEG cell-based competition ELISA accurately delineated the pharmacokinetics of PEG(5K), comparable to those determined by direct measurement of radioactivity in blood after intravenous injection of CH(3)-PEG(5K)-(131)I into mice. This quantitative strategy may provide a simple and sensitive method for quantifying PEG and PEGylated small molecules in vivo.
Radiology | 2009
Shey-Cherng Tzou; Steve R. Roffler; Kuo-Hsiang Chuang; Hsin-Pei Yeh; Chien-Han Kao; Yu-Cheng Su; Chiu-Min Cheng; Wei-Lung Tseng; Jentaie Shiea; I-Hong Harm; Kai-Wen Cheng; Bing-Mae Chen; Jeng-Jong Hwang; Tian-Lu Cheng; Hsin-Ell Wang
PURPOSE To develop a new glucuronide probe for micro-positron emission topography (PET) that can depict beta-glucuronidase (betaG)-expressing tumors in vivo. MATERIALS AND METHODS All animal experiments were preapproved by the Institutional Animal Care and Use Committee. A betaG-specific probe was generated by labeling phenolphthalein glucuronide (PTH-G) with iodine 131 ((131)I) or (124)I. To test the specificity of the probe in vitro, (124)I-PTH-G was added to CT26 and betaG-expressing CT26 (CT26/betaG) cells. Mice bearing CT26 and CT26/betaG tumors (n = 6) were injected with (124)I-PTH-G and subjected to micro-PET imaging. A betaG-specific inhibitor D-saccharic acid 1,4-lactone monohydrate was used in vitro and in vivo to ascertain the specificity of the glucuronide probes. Finally, the biodistributions of the probes were determined in selected organs after injection of (131)I-PTH-G to mice bearing CT26 and CT26/betaG tumors (n = 14). Differences in the radioactivity in CT26 and CT26/betaG tumors were analyzed with the Wilcoxon signed rank test. RESULTS (124)I-PTH-G was selectively converted to (124)I-PTH (phenolphthalein), which accumulated in CT26/betaG cells and tumors in vitro. The micro-PET images demonstrated enhanced activity in CT26/betaG tumors resulting from betaG-mediated conversion and trapping of the radioactive probes. Accumulation of radioactive signals was 3.6-, 3.4-, and 3.3-fold higher in the CT26/betaG tumors than in parental CT26 tumors at 1, 3, and 20 hours, respectively, after injection of the probe (for all the three time points, P < .05). CONCLUSION Hydrophilic-hydrophobic conversion of (124)I-PTH-G probe can aid in imaging of betaG-expressing tumors in vivo.
Cancer Gene Therapy | 2013
Chiu-Min Cheng; Fang-Ming Chen; Yun-Chi Lu; Shey-Cherng Tzou; Jaw-Yuan Wang; Chien-Han Kao; Kuang Wen Liao; Ta Chun Cheng; Chih-Hung Chuang; Bing-Mae Chen; Steve R. Roffler; Ta-Chun Cheng
Extracellular activation of hydrophilic glucuronide prodrugs by β-glucuronidase (βG) was examined to increase the therapeutic efficacy of bacteria-directed enzyme prodrug therapy (BDEPT). βG was expressed on the surface of Escherichia coli by fusion to either the bacterial autotransporter protein Adhesin (membrane βG (mβG)/AIDA) or the lipoprotein (lpp) outermembrane protein A (mβG/lpp). Both mβG/AIDA and mβG/lpp were expressed on the bacterial surface, but only mβG/AIDA displayed enzymatic activity. The rate of substrate hydrolysis by mβG/AIDA-BL21cells was 2.6-fold greater than by pβG-BL21 cells, which express periplasmic βG. Human colon cancer HCT116 cells that were incubated with mβG/AIDA-BL21 bacteria were sensitive to a glucuronide prodrug (p-hydroxy aniline mustard β-D-glucuronide, HAMG) with an half maximal inhibitory concentration (IC50) value of 226.53±45.4 μM, similar to the IC50 value of the active drug (p-hydroxy aniline mustard, pHAM; 70.6±6.75 μM), indicating that mβG/AIDA on BL21 bacteria could rapidly and efficiently convert HAMG to an active anticancer agent. These results suggest that surface display of functional βG on bacteria can enhance the hydrolysis of glucuronide prodrugs and may increase the effectiveness of BDEPT.
Cancer Gene Therapy | 2009
Chiu Min Cheng; Pei-Yu Chu; Kuo-Hsiang Chuang; Steve R. Roffler; Chien-Han Kao; Wei-Lung Tseng; Jentaie Shiea; W.-D. Chang; Y. C. Su; Bing-Mae Chen; Yun-Ming Wang; Tian-Lu Cheng
Non-invasive gene monitoring is important for most gene therapy applications to ensure selective gene transfer to specific cells or tissues. We developed a non-invasive imaging system to assess the location and persistence of gene expression by anchoring an anti-dansyl (DNS) single-chain antibody (DNS receptor) on the cell surface to trap DNS-derivatized imaging probes. DNS hapten was covalently attached to cross-linked iron oxide (CLIO) to form a 39±0.5 nm DNS-CLIO nanoparticle imaging probe. DNS-CLIO specifically bound to DNS receptors but not to a control single-chain antibody receptor. DNS-CLIO (100 μM Fe) was non-toxic to both B16/DNS (DNS receptor positive) and B16/phOx (control receptor positive) cells. Magnetic resonance (MR) imaging could detect as few as 10% B16/DNS cells in a mixture in vitro. Importantly, DNS-CLIO specifically bound to a B16/DNS tumor, which markedly reduced signal intensity. Similar results were also shown with DNS quantum dots, which specifically targeted CT26/DNS cells but not control CT26/phOx cells both in vitro and in vivo. These results demonstrate that DNS nanoparticles can systemically monitor the expression of DNS receptor in vivo by feasible imaging systems. This targeting strategy may provide a valuable tool to estimate the efficacy and specificity of different gene delivery systems and optimize gene therapy protocols in the clinic.
PLOS ONE | 2014
Chiu-Min Cheng; Shey-Cherng Tzou; Ya-Han Zhuang; Chien-Chiao Huang; Chien-Han Kao; Kuang Wen Liao; Ta-Chun Cheng; Chih-Hung Chuang; Yuan-Chin Hsieh; Ming-Hong Tai; Tian-Lu Cheng
Single-chain variable fragments (scFvs) serve as an alternative to full-length monoclonal antibodies used in research and therapeutic and diagnostic applications. However, when recombinant scFvs are overexpressed in bacteria, they often form inclusion bodies and exhibit loss of function. To overcome this problem, we developed an scFv secretion system in which scFv was fused with osmotically inducible protein Y (osmY), a bacterial secretory carrier protein, for efficient protein secretion. Anti-EGFR scFv (αEGFR) was fused with osmY (N- and C-termini) and periplasmic leader sequence (pelB) to generate αEGFR-osmY, osmY-αEGFR, and pelB-αEGFR (control), respectively. In comparison with the control, both the osmY-fused αEGFR scFvs were soluble and secreted into the LB medium. Furthermore, the yield of soluble αEGFR-osmY was 20-fold higher, and the amount of secreted protein was 250-fold higher than that of osmY-αEGFR. In addition, the antigen-binding activity of both the osmY-fused αEGFRs was 2-fold higher than that of the refolded pelB-αEGFR from inclusion bodies. Similar results were observed with αTAG72-osmY and αHer2-osmY. These results suggest that the N-terminus of osmY fused with scFv produces a high yield of soluble, functional, and secreted scFv, and the osmY-based bacterial secretion system may be used for the large-scale industrial production of low-cost αEGFR protein.
Molecular Cancer Therapeutics | 2014
Yu-Cheng Su; Ta-Chun Cheng; Yu-Ling Leu; Steve R. Roffler; Jaw-Yuan Wang; Chih-Hung Chuang; Chien-Han Kao; Kai-Chuan Chen; Hsin-Ell Wang; Tian-Lu Cheng
Beta-glucuronidase (βG) is a potential biomarker for cancer diagnosis and prodrug therapy. The ability to image βG activity in patients would assist in personalized glucuronide prodrug cancer therapy. However, whole-body imaging of βG activity for medical usage is not yet available. Here, we developed a radioactive βG activity–based trapping probe for positron emission tomography (PET). We generated a 124I-tyramine–conjugated difluoromethylphenol beta-glucuronide probe (TrapG) to form 124I-TrapG that could be selectively activated by βG for subsequent attachment of 124I-tyramine to nucleophilic moieties near βG-expressing sites. We estimated the specificity of a fluorescent FITC-TrapG, the cytotoxicity of tyramine-TrapG, and the serum half-life of 124I-TrapG. βG targeting of 124I-TrapG in vivo was examined by micro-PET. The biodistribution of 131I-TrapG was investigated in different organs. Finally, we imaged the endogenous βG activity and assessed its correlation with therapeutic efficacy of 9-aminocamptothecin glucuronide (9ACG) prodrug in native tumors. FITC-TrapG showed specific trapping at βG-expressing CT26 (CT26/mβG) cells but not in CT26 cells. The native TrapG probe possessed low cytotoxicity. 124I-TrapG preferentially accumulated in CT26/mβG but not CT26 cells. Meanwhile, micro-PET and whole-body autoradiography results demonstrated that 124I-TrapG signals in CT26/mβG tumors were 141.4-fold greater than in CT26 tumors. Importantly, Colo205 xenografts in nude mice that express elevated endogenous βG can be monitored by using infrared glucuronide trapping probes (NIR-TrapG) and suppressed by 9ACG prodrug treatment. 124I-TrapG exhibited low cytotoxicity allowing long-term monitoring of βG activity in vivo to aid in the optimization of prodrug targeted therapy. Mol Cancer Ther; 13(12); 2852–63. ©2014 AACR.
PLOS ONE | 2014
Kuo-Hsiang Chuang; Yuan-Chin Hsieh; I-Shiuan Chiang; Chih-Hung Chuang; Chien-Han Kao; Ta-Chun Cheng; Yeng-Tseng Wang; Wen-Wei Lin; Bing-Mae Chen; Steve R. Roffler; Ming Yii Huang; Tian-Lu Cheng
Developing a high-throughput method for the effecient selection of the highest producing cell is very important for the production of recombinant protein drugs. Here, we developed a novel transiently protein-anchored system coupled with fluorescence activated cell sorting (FACS) for the efficient selection of the highest producing cell. A furin cleavage peptide (RAKR) was used to join a human anti-epithelial growth factor antibody (αEGFR Ab) and the extracellular-transmembrane-cytosolic domains of the mouse B7-1 antigen (B7). The furin inhibitor can transiently switch secreted αEGFR Ab into a membrane-anchored form. After cell sorting, the level of membrane αEGFR Ab-RAKR-B7 is proportional to the amount of secreted αEGFR Ab in the medium. We further selected 23 αEGFR Ab expressing cells and demonstrated a high correlation (R2 = 0.9165) between the secretion level and surface expression levels of αEGFR Ab. These results suggested that the novel transiently protein-anchored system can easily and efficiently select the highest producing cells, reducing the cost for the production of biopharmaceuticals.
PLOS ONE | 2015
Chien-Chiao Huang; Kung-Kai Kuo; Ta-Chun Cheng; Chih-Hung Chuang; Chien-Han Kao; Yuan-Chin Hsieh; Kuang-Hung Cheng; Jaw-Yuan Wang; Chiu-Min Cheng; Chien-Shu Chen; Tian-Lu Cheng
The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies.