Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chien Van Ha is active.

Publication


Featured researches published by Chien Van Ha.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Positive regulatory role of strigolactone in plant responses to drought and salt stress

Chien Van Ha; Marco Antonio Leyva-González; Yuriko Osakabe; Uyen Tran; Rie Nishiyama; Yasuko Watanabe; Maho Tanaka; Motoaki Seki; Shinjiro Yamaguchi; Nguyen Van Dong; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Luis Herrera-Estrella; Lam-Son Phan Tran

Significance Environmental stresses, such as drought and high salinity, adversely affect plant growth and productivity. Although various phytohormones are known to be involved in regulation of plant stress responses, the role of strigolactone (SL) in this important process remains elusive. By using different molecular and physiological approaches, we provide compelling evidence that, in Arabidopsis, SL acts as positive regulator of plant responses to drought and salt stress, which was associated with shoot- rather than root-related traits. Comparative transcriptome analysis suggests that plants integrate multiple hormone-response pathways—at least SL, abscisic acid, and cytokinin pathways—for adaptation to environmental stress. Our findings demonstrate that genetic modulation of SL content/response could provide a new approach for development of crops with improved stress tolerance. This report provides direct evidence that strigolactone (SL) positively regulates drought and high salinity responses in Arabidopsis. Both SL-deficient and SL-response [more axillary growth (max)] mutants exhibited hypersensitivity to drought and salt stress, which was associated with shoot- rather than root-related traits. Exogenous SL treatment rescued the drought-sensitive phenotype of the SL-deficient mutants but not of the SL-response mutant, and enhanced drought tolerance of WT plants, confirming the role of SL as a positive regulator in stress response. In agreement with the drought-sensitive phenotype, max mutants exhibited increased leaf stomatal density relative to WT and slower abscisic acid (ABA)-induced stomatal closure. Compared with WT, the max mutants exhibited increased leaf water loss rate during dehydration and decreased ABA responsiveness during germination and postgermination. Collectively, these results indicate that cross-talk between SL and ABA plays an important role in integrating stress signals to regulate stomatal development and function. Additionally, a comparative microarray analysis of the leaves of the SL-response max2 mutant and WT plants under normal and dehydrative conditions revealed an SL-mediated network controlling plant responses to stress via many stress- and/or ABA-responsive and cytokinin metabolism-related genes. Our results demonstrate that plants integrate multiple hormone-response pathways for adaptation to environmental stress. Based on our results, genetic modulation of SL content/response could be applied as a potential approach to reduce the negative impact of abiotic stress on crop productivity.


PLOS ONE | 2012

Evaluation of Candidate Reference Genes for Normalization of Quantitative RT-PCR in Soybean Tissues under Various Abiotic Stress Conditions

Dung Tien Le; Donavan L. Aldrich; Babu Valliyodan; Yasuko Watanabe; Chien Van Ha; Rie Nishiyama; Satish K. Guttikonda; Truyen N. Quach; Juan J. Gutierrez-Gonzalez; Lam-Son Phan Tran; Henry T. Nguyen

Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid) treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response

Rie Nishiyama; Yasuko Watanabe; Marco Antonio Leyva-González; Chien Van Ha; Yasunari Fujita; Maho Tanaka; Motoaki Seki; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Luis Herrera-Estrella; Lam-Son Phan Tran

Cytokinin is an essential phytohormone controlling various biological processes, including environmental stress responses. In Arabidopsis, although the cytokinin (CK)-related phosphorelay—consisting of three histidine kinases, five histidine phosphotransfer proteins (AHPs), and a number of response regulators—has been known to be important for stress responses, the AHPs required for CK signaling during drought stress remain elusive. Here, we report that three Arabidopsis AHPs, namely AHP2, AHP3, and AHP5, control responses to drought stress in negative and redundant manner. Loss of function of these three AHP genes resulted in a strong drought-tolerant phenotype that was associated with the stimulation of protective mechanisms. Specifically, cell membrane integrity was improved as well as an increased sensitivity to abscisic acid (ABA) was observed rather than an alteration in ABA-mediated stomatal closure and density. Consistent with their negative regulatory functions, all three AHP genes’ expression was down-regulated by dehydration, which most likely resulted from a stress-induced reduction of endogenous CK levels. Furthermore, global transcriptional analysis of ahp2,3,5 leaves revealed down-regulation of many well-known stress- and/or ABA-responsive genes, suggesting that these three AHPs may control drought response in both ABA-dependent and ABA-independent manners. The discovery of mechanisms of activation and the targets of the downstream components of CK signaling involved in stress responses is an important and challenging goal for the study of plant stress regulatory network responses and plant growth. The knowledge gained from this study also has broad potential for biotechnological applications to increase abiotic stress tolerance in plants.


DNA Research | 2013

The Auxin Response Factor Transcription Factor Family in Soybean: Genome-Wide Identification and Expression Analyses During Development and Water Stress

Chien Van Ha; Dung Tien Le; Rie Nishiyama; Yasuko Watanabe; Saad Sulieman; Uyen Tran; Keiichi Mochida; Nguyen Van Dong; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Lam-Son Phan Tran

In plants, the auxin response factor (ARF) transcription factors play important roles in regulating diverse biological processes, including development, growth, cell division and responses to environmental stimuli. An exhaustive search of soybean genome revealed 51 GmARFs, many of which were formed by genome duplications. The typical GmARFs (43 members) contain a DNA-binding domain, an ARF domain and an auxin/indole acetic acid (AUX/IAA) dimerization domain, whereas the remaining eight members lack the dimerization domain. Phylogenetic analysis of the ARFs from soybean and Arabidopsis revealed both similarity and divergence between the two ARF families, as well as enabled us to predict the functions of the GmARFs. Using quantitative real-time polymerase chain reaction (qRT-PCR) and available soybean Affymetrix array and Illumina transcriptome sequence data, a comprehensive expression atlas of GmARF genes was obtained in various organs and tissues, providing useful information about their involvement in defining the precise nature of individual tissues. Furthermore, expression profiling using qRT-PCR and microarray data revealed many water stress-responsive GmARFs in soybean, albeit with different patterns depending on types of tissues and/or developmental stages. Our systematic analysis has identified excellent tissue-specific and/or stress-responsive candidate GmARF genes for in-depth in planta functional analyses, which would lead to potential applications in the development of genetically modified soybean cultivars with enhanced drought tolerance.


Journal of Experimental Botany | 2013

Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability

Saad Sulieman; Chien Van Ha; Joachim Schulze; Lam-Son Phan Tran

Medicago truncatula is an important model plant for characterization of P deficiency on leguminous plants at the physiological and molecular levels. Growth optimization of this plant with regard to P supply is the first essential step for elucidation of the role of P in regulation of nodulation. Hence, a study was carried out to address the growth pattern of M. truncatula hydroponically grown at different gradual increases in P levels. The findings revealed that M. truncatula had a narrow P regime, with an optimum P level (12 μM P) which is relatively close to the concentration that induces P toxicity. The accumulated P concentration (2.7 mg g–1 dry matter), which is normal for other crops and legumes, adversely affected the growth of M. truncatula plants. Under P deficiency, M. truncatula showed a higher symbiotic efficiency with Sinorhizobium meliloti 2011 in comparison with S. meliloti 102F51, partially as a result of higher electron allocation to N2 versus H+. The total composition of free amino acids in the phloem was significantly affected by P deprivation. This pattern was found to be almost exclusively the result of the increase in the asparagine level, suggesting that asparagine might be the shoot-derived signal that translocates to the nodules and exerts the down-regulation of nitrogenase activity. Additionally, P deprivation was found to have a strong influence on the contents of the nodule carbon metabolites. While levels of sucrose and succinate tended to decrease, a higher accumulation of malate was observed. These findings have provided evidence that N2 fixation of M. truncatula is mediated through an N feedback mechanism which is closely related to nodule carbon metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought

Kien Huu Nguyen; Chien Van Ha; Rie Nishiyama; Yasuko Watanabe; Marco Antonio Leyva-González; Yasunari Fujita; Uven Thi Tran; Weiqiang Li; Maho Tanaka; Motoaki Seki; G. Eric Schaller; Luis Herrera-Estrella; Lam-Son Phan Tran

Significance Cytokinin regulates plant drought adaptation via a multistep component system consisting of histidine kinases, histidine phosphotransfer proteins, and type A and B response regulators (RRs). The functional dissection of individual members of cytokinin signaling and identification of their downstream targets in drought responses are of high importance to provide a complete picture of how cytokinin controls plant drought adaptation. Previous studies have identified functions of several histidine kinases, histidine phosphotransfer proteins, and type A RRs in drought responses of Arabidopsis; however, the roles of type B RRs remain elusive. This comprehensive functional analysis of three type B RRs provides further insight into how cytokinin signaling regulates plant drought adaptation through the proposed yin-yang strategy, enabling efficient application of cytokinin biology in stress tolerance-oriented plant biotechnology. In this study, we used a loss-of-function approach to elucidate the functions of three Arabidopsis type B response regulators (ARRs)—namely ARR1, ARR10, and ARR12—in regulating the Arabidopsis plant responses to drought. The arr1,10,12 triple mutant showed a significant increase in drought tolerance versus WT plants, as indicated by its higher relative water content and survival rate on drying soil. This enhanced drought tolerance of arr1,10,12 plants can be attributed to enhanced cell membrane integrity, increased anthocyanin biosynthesis, abscisic acid (ABA) hypersensitivity, and reduced stomatal aperture, but not to altered stomatal density. Further drought-tolerance tests of lower-order double and single mutants indicated that ARR1, ARR10, and ARR12 negatively and redundantly control plant responses to drought, with ARR1 appearing to bear the most critical function among the three proteins. In agreement with these findings, a comparative genome-wide analysis of the leaves of arr1,10,12 and WT plants under both normal and dehydration conditions suggested a cytokinin (CK) signaling-mediated network controlling plant adaptation to drought via many dehydration/drought- and/or ABA-responsive genes that can provide osmotic adjustment and protection to cellular and membrane structures. Expression of all three ARR genes was repressed by dehydration and ABA treatments, inferring that plants down-regulate these genes as an adaptive mechanism to survive drought. Collectively, our results demonstrate that repression of CK response, and thus CK signaling, is one of the strategies plants use to cope with water deficit, providing novel insight for the design of drought-tolerant plants by genetic engineering.


PLOS ONE | 2014

Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments.

Chien Van Ha; Maryam Nasr Esfahani; Yasuko Watanabe; Uyen Tran; Saad Sulieman; Keiichi Mochida; Dong Van Nguyen; Lam-Son Phan Tran

The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum) and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA) treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control), dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR). Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.


International Journal of Molecular Sciences | 2013

Differential Expression Analysis of a Subset of Drought-Responsive GmNAC Genes in Two Soybean Cultivars Differing in Drought Tolerance

Nguyen Phuong Thao; Nguyen Binh Anh Thu; Xuan Lan Thi Hoang; Chien Van Ha; Lam-Son Phan Tran

The plant-specific NAC transcription factors play important roles in plant response to drought stress. Here, we have compared the expression levels of a subset of GmNAC genes in drought-tolerant DT51 and drought-sensitive MTD720 under both normal and drought stress conditions aimed at identifying correlation between GmNAC expression levels and drought tolerance degree, as well as potential GmNAC candidates for genetic engineering. The expression of 23 selected dehydration-responsive GmNACs was assessed in both stressed and unstressed root tissues of DT51 and MTD720 using real-time quantitative PCR. The results indicated that expression of GmNACs was genotype-dependent. Seven and 13 of 23 tested GmNACs showed higher expression levels in roots of DT51 in comparison with MTD720 under normal and drought stress conditions, respectively, whereas none of them displayed lower transcript levels under any conditions. This finding suggests that the higher drought tolerance of DT51 might be positively correlated with the higher induction of the GmNAC genes during water deficit. The drought-inducible GmNAC011 needs to be mentioned as its transcript accumulation was more than 76-fold higher in drought-stressed DT51 roots relative to MTD720 roots. Additionally, among the GmNAC genes examined, GmNAC085, 092, 095, 101 and 109 were not only drought-inducible but also more highly up-regulated in DT51 roots than in that of MTD720 under both treatment conditions. These data together suggest that GmNAC011, 085, 092, 095, 101 and 109 might be promising candidates for improvement of drought tolerance in soybean by biotechnological approaches.


Frontiers in Plant Science | 2015

Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions

Chien Van Ha; Yasuko Watanabe; Uyen Tran; Dung Tien Le; Maho Tanaka; Kien Huu Nguyen; Motoaki Seki; Dong Van Nguyen; Lam-Son Phan Tran

The economically important DT2008 and the model Williams 82 (W82) soybean cultivars were reported to have differential drought-tolerant degree to dehydration and drought, which was associated with root trait. Here, we used 66K Affymetrix Soybean Array GeneChip to compare the root transcriptomes of DT2008 and W82 seedlings under normal, as well as mild (2 h treatment) and severe (10 h treatment) dehydration conditions. Out of the 38172 soybean genes annotated with high confidence, 822 (2.15%) and 632 (1.66%) genes showed altered expression by dehydration in W82 and DT2008 roots, respectively, suggesting that a larger machinery is required to be activated in the drought-sensitive W82 cultivar to cope with the stress. We also observed that long-term dehydration period induced expression change of more genes in soybean roots than the short-term one, independently of the genotypes. Furthermore, our data suggest that the higher drought tolerability of DT2008 might be attributed to the higher number of genes induced in DT2008 roots than in W82 roots by early dehydration, and to the expression changes of more genes triggered by short-term dehydration than those by prolonged dehydration in DT2008 roots vs. W82 roots. Differentially expressed genes (DEGs) that could be predicted to have a known function were further analyzed to gain a basic understanding on how soybean plants respond to dehydration for their survival. The higher drought tolerability of DT2008 vs. W82 might be attributed to differential expression in genes encoding osmoprotectant biosynthesis-, detoxification- or cell wall-related proteins, kinases, transcription factors and phosphatase 2C proteins. This research allowed us to identify genetic components that contribute to the improved drought tolerance of DT2008, as well as provide a useful genetic resource for in-depth functional analyses that ultimately leads to development of soybean cultivars with improved tolerance to drought.


BioMed Research International | 2013

Characterization of the newly developed soybean cultivar DT2008 in relation to the model variety W82 reveals a new genetic resource for comparative and functional genomics for improved drought tolerance.

Chien Van Ha; Dung Tien Le; Rie Nishiyama; Yasuko Watanabe; Uyen Tran; Nguyen Van Dong; Lam-Son Phan Tran

Soybean (Glycine max) productivity is adversely affected by drought stress worldwide, including Vietnam. In the last few years, we have made a great effort in the development of drought-tolerant soybean cultivars by breeding and/or radiation-induced mutagenesis. One of the newly developed cultivars, the DT2008, showed enhanced drought tolerance and stable yield in the field conditions. The purpose of this study was to compare the drought-tolerant phenotype of DT2008 and Williams 82 (W82) by assessing their water loss and growth rate under dehydration and/or drought stress conditions as a means to provide genetic resources for further comparative and functional genomics. We found that DT2008 had reduced water loss under both dehydration and drought stresses in comparison with W82. The examination of root and shoot growths of DT2008 and W82 under both normal and drought conditions indicated that DT2008 maintains a better shoot and root growth rates than W82 under both two growth conditions. These results together suggest that DT2008 has better drought tolerance degree than W82. Our results open the way for further comparison of DT2008 and W82 at molecular levels by advanced omic approaches to identify mutation(s) involved in the enhancement of drought tolerance of DT2008, contributing to our understanding of drought tolerance mechanisms in soybean. Mutation(s) identified are potential candidates for genetic engineering of elite soybean varieties to improve drought tolerance and biomass.

Collaboration


Dive into the Chien Van Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Herrera-Estrella

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge