Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chien-Yi Chang is active.

Publication


Featured researches published by Chien-Yi Chang.


Journal of Bacteriology | 2006

Quorum Sensing in Yersinia enterocolitica Controls Swimming and Swarming Motility

Steve Atkinson; Chien-Yi Chang; R. Elizabeth Sockett; Miguel Cámara; Paul Williams

The Yersinia enterocolitica LuxI homologue YenI directs the synthesis of N-3-(oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL). In a Y. enterocolitica yenI mutant, swimming motility is temporally delayed while swarming motility is abolished. Since both swimming and swarming are flagellum dependent, we purified the flagellin protein from the parent and yenI mutant. Electrophoresis revealed that in contrast to the parent strain, the yenI mutant grown for 17 h at 26 degrees C lacked the 45-kDa flagellin protein FleB. Reverse transcription-PCR indicated that while mutation of yenI had no effect on yenR, flhDC (the motility master regulator) or fliA (the flagellar sigma factor) expression, fleB (the flagellin structural gene) was down-regulated. Since 3-oxo-C6-HSL and C6-HSL did not restore swimming or swarming in the yenI mutant, we reexamined the N-acylhomoserine lactone (AHL) profile of Y. enterocolitica. Using AHL biosensors and mass spectrometry, we identified three additional AHLs synthesized via YenI: N-(3-oxodecanoyl)homoserine lactone, N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL), and N-(3-oxotetradecanoyl)homoserine lactone. However, none of the long-chain AHLs either alone or in combination with the short-chain AHLs restored swarming or swimming in the yenI mutant. By investigating the transport of radiolabeled 3-oxo-C12-HSL and by introducing an AHL biosensor into the yenI mutant we demonstrate that the inability of exogenous AHLs to restore motility to the yenI mutant is not related to a lack of AHL uptake. However, both AHL synthesis and motility were restored by complementation of the yenI mutant with a plasmid-borne copy of yenI.


Scientific Reports | 2015

Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target

Chien-Yi Chang; Thiba Krishnan; Hao Wang; Ye Chen; Wai Fong Yin; Yee Meng Chong; Li Ying Tan; Teik Min Chong; Kok-Gan Chan

N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.


PLOS ONE | 2010

The First Bite— Profiling the Predatosome in the Bacterial Pathogen Bdellovibrio

Carey Lambert; Chien-Yi Chang; Michael J. Capeness; R. Elizabeth Sockett

Bdellovibrio bacteriovorus is a Gram-negative bacterium that is a pathogen of other Gram-negative bacteria, including many bacteria which are pathogens of humans, animals and plants. As such Bdellovibrio has potential as a biocontrol agent, or living antibiotic. B. bacteriovorus HD100 has a large genome and it is not yet known which of it encodes the molecular machinery and genetic control of predatory processes. We have tried to fill this knowledge-gap using mixtures of predator and prey mRNAs to monitor changes in Bdellovibrio gene expression at a timepoint of early-stage prey infection and prey killing in comparison to control cultures of predator and prey alone and also in comparison to Bdellovibrio growing axenically (in a prey-or host independent “HI” manner) on artificial media containing peptone and tryptone. From this we have highlighted genes of the early predatosome with predicted roles in prey killing and digestion and have gained insights into possible regulatory mechanisms as Bdellovibrio enter and establish within the prey bdelloplast. Approximately seven percent of all Bdellovibrio genes were significantly up-regulated at 30 minutes of infection- but not in HI growth- implicating the role of these genes in prey digestion. Five percent were down-regulated significantly, implicating their role in free-swimming, attack-phase physiology. This study gives the first post- genomic insight into the predatory process and reveals some of the important genes that Bdellovibrio expresses inside the prey bacterium during the initial attack.


Molecular Microbiology | 2008

Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA

Steve Atkinson; Chien-Yi Chang; Hannah L. Patrick; Catherine M. F. Buckley; Yao Wang; R. Elizabeth Sockett; Miguel Cámara; Paul Williams

Quorum sensing (QS) in Yersinia pseudotuberculosis involves two pairs of LuxRI orthologues (YpsRI and YtbRI) and multiple N‐acylhomoserine lactones (AHLs). In a ypsI/ytbI mutant, AHL synthesis was abolished, unaffected in a ypsR/ytbR double mutant and substantially reduced in a ypsI/ytbR mutant, indicating that neither YpsR nor YtbR is essential for AHL synthesis. To determine the interrelationship between YpsRI and YtbRI we constructed chromosomal lux–promoter fusions to ypsR, ypsI, ytbR and ytbI and examined their expression in each of the QS mutant backgrounds. The YpsRI system negatively autoregulates itself but positively regulates the expression of the ytbRI system whereas the ytbRI system is positively autoregulated but only at the level of ytbI expression. YtbRI does not control expression of ypsR or ypsI. This hierarchical QS system controls swimming motility via regulation of flhDC and fliA. The AHLs synthesized via YtbI play a dual role, activating flhDC, in conjunction with YpsR but repressing fliA in conjunction with YtbR and YpsR. In liquid and plate assays, the early onset of motility observed in ypsR and ypsI mutants was abolished in ytbI, ytbR ypsI/ytbI, ypsR/ytbR mutants, indicating that QS regulates motility both positively (via YtbRI) and negatively (via YpsRI).


Advanced Materials | 2013

Discovery of Novel Materials with Broad Resistance to Bacterial Attachment Using Combinatorial Polymer Microarrays

Andrew L. Hook; Chien-Yi Chang; Jing Yang; Steve Atkinson; Robert Langer; Daniel G. Anderson; Martyn C. Davies; Paul Williams; Morgan R. Alexander

A new class of bacteria-attachment-resistant materials is discovered using a multi-generation polymer microarray methodology that reduces bacterial attachment by up to 99.3% compared with a leading commercially available silver hydrogel anti-bacterial material. The coverage of three bacterial species, Pseudomonas aeruginosa, Staphylococcus aureus, and uropathogenic Escherichia coli is assessed.


PLOS Pathogens | 2011

Biofilm Development on Caenorhabditis elegans by Yersinia Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion

Steve Atkinson; Robert J. Goldstone; George W. P. Joshua; Chien-Yi Chang; Hannah L. Patrick; Miguel Cámara; Brendan W. Wren; Paul Williams

Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.


Frontiers in Microbiology | 2015

Modulation of Host Biology by Pseudomonas aeruginosa Quorum Sensing Signal Molecules: Messengers or Traitors

Yi-Chia Liu; Kok-Gan Chan; Chien-Yi Chang

Bacterial cells sense their population density and respond accordingly by producing various signal molecules to the surrounding environments thereby trigger a plethora of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction. Moreover, bacterial QSSMs were shown to interfere with host cell signaling and modulate host immune responses. QSSMs not only regulate the expression of bacterial virulence factors but themselves act in the modulation of host biology that can be potential therapeutic targets.


Frontiers in Microbiology | 2015

Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence

Kok-Gan Chan; Yi-Chia Liu; Chien-Yi Chang

Bacteria sense their own population size, tune the expression of responding genes, and behave accordingly to environmental stimuli by secreting signaling molecules. This phenomenon is termed as quorum sensing (QS). By exogenously manipulating the signal transduction bacterial population behaviors could be controlled, which may be done through quorum quenching (QQ). QS related regulatory networks have been proven their involvement in regulating many virulence determinants in pathogenic bacteria in the course of infections. Interfering with QS signaling system could be a novel strategy against bacterial infections and therefore requires more understanding of their fundamental mechanisms. Here we review the development of studies specifically on the inhibition of production of N-acyl-homoserine lactone (AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles in its pathogenicity. The studies in QQ targeting on AQ are also discussed.


PLOS ONE | 2012

Unusual long-chain N-acyl homoserine lactone production by and presence of quorum quenching activity in bacterial isolates from diseased tilapia fish.

Chien-Yi Chang; Chong Lek Koh; Choon Kook Sam; Xin Yue Chan; Wai Fong Yin; Kok-Gan Chan

Growth-dependent cell-cell communication termed quorum sensing is a key regulatory system in bacteria for controlling gene expression including virulence factors. In this study five potential bacterial pathogens including Bacillus sp. W2.2, Klebsiella sp. W4.2, Pseudomonas sp. W3 and W3.1 and Serratia sp. W2.3 were isolated from diseased Tilapia fish in Malaysia, supplied by the leading global fish supplier. Proteolytic activity assays confirmed that with the exception of Klebsiella sp. W4.2, all isolates showed distinct proteolytic activity. Furthermore Bacillus sp. W2.2 and Pseudomonas sp. strains W3 and W3.1 also displayed haemolytic activity. By using high resolution liquid chromatography mass spectrometry, we revealed the presence of unusually long-chain N-(3-oxohexadecanoyl)-homoserine lactone (3-oxo-C16-HSL) from Pseudomonas sp. W3.1 and N-dodecanoyl-homoserine lactone (C12-HSL) from Serratia sp. W2.3, respectively. Interestingly, Pseudomonas sp. W3.1 also produced a wide range of Pseudomonas quinolone signalling (PQS) molecules. Pseudomonas sp. W3 did not show any quorum sensing properties but possessed quorum quenching activity that inactivated AHLs. This study is the first documentation that shows unusual long-chain AHLs production in Serratia sp. and Pseudomonas sp. isolated from diseased fish and the latter also produce a wide range of PQS molecules.


Gut Pathogens | 2013

Insights of biosurfactant producing Serratia marcescens strain W2.3 isolated from diseased tilapia fish: a draft genome analysis

Xin Yue Chan; Chien-Yi Chang; Kar Wai Hong; Kok Keng Tee; Wai Fong Yin; Kok-Gan Chan

BackgroundSerratia marcescens is an opportunistic bacterial pathogen with broad range of host ranging from vertebrates, invertebrates and plants. S. marcescens strain W2.3 was isolated from a diseased tilapia fish and it was suspected to be the causal agent for the fish disease as virulence genes were found within its genome. In this study, for the first time, the genome sequences of S. marcescens strain W2.3 were sequenced using the Illumina MiSeq platform.ResultSeveral virulent factors of S. marcescens such as serrawettin, a biosurfactant, has been reported to be regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). In our previous studies, an unusual AHL with long acyl side chain was detected from this isolate suggesting the possibility of novel virulence factors regulation. This evokes our interest in the genome of this bacterial strain and hereby we present the draft genome of S. marcescens W2.3, which carries the serrawettin production gene, swrA and the AHL-based QS transcriptional regulator gene, luxR which is an orphan luxR.ConclusionWith the availability of the whole genome sequences of S. marcescens W2.3, this will pave the way for the study of the QS-mediated genes expression in this bacterium.

Collaboration


Dive into the Chien-Yi Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Williams

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew L. Hook

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel G. Anderson

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Robert Langer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Steve Atkinson

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge