Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chifu B. Huang is active.

Publication


Featured researches published by Chifu B. Huang.


Archives of Oral Biology | 2011

Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms

Chifu B. Huang; Yelena V. Alimova; Taylor M. Myers; Jeffrey L. Ebersole

OBJECTIVES This study assessed the antibacterial activity of short-, medium-, and long-chain fatty acids against various oral microorganisms. METHODS The short-chain fatty acids [formic acid (C1), acetic acid (C2), propionic acid (C3), butyric acid (C4), isobutyric acid (C4), isovaleric acid (C5), hexanoic acid (C6)], medium-chain fatty acids [octanoic acid (C8), capric acid (C10), lauric acid (12)], and long-chain fatty acids [myristic acid (C14), palmitic acid (C16)], were investigated for antimicrobial activity against Streptococcus mutans, Streptococcus gordonii, Streptococcus sanguis, Candida albicans, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis. RESULTS The data demonstrated that the fatty acids exhibited patterns of inhibition against oral bacteria with some specificity that appeared related more to the bacterial species that the general structural characteristics of the microorganism. As a group the fatty acids were much less effective against C. albicans than the oral bacteria, with effectiveness limited to hexanoic, octanoic, and lauric acids. Formic acid, capric, and lauric acids were broadly inhibitory for the bacteria. Interestingly, fatty acids that are produced at metabolic end-products by a number of these bacteria, were specifically inactive against the producing species, whilst substantially inhibiting the growth of other oral microorganisms. CONCLUSIONS The results indicate that the antimicrobial activity of short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs) could influence the microbial ecology in the oral cavity via at least 2 potential pathways. First, the agents delivered exogenously as therapeutic adjuncts could be packaged to enhance a microbial-regulatory environment in the subgingival sulcus. Second, it would be the intrinsic nature of these fatty acid inhibitors in contributing to the characteristics of the microbial biofilms, their evolution, and emergence of species within the biofilms. Further studies on these functions are required to better understand the nature of these potential microbial interactions in the biofilms.


Clinical and Vaccine Immunology | 2010

HIV-1 Reactivation Induced by the Periodontal Pathogens Fusobacterium nucleatum and Porphyromonas gingivalis Involves Toll-Like Receptor 2 and 9 Activation in Monocytes/Macrophages

Octavio A. Gonzalez; Mengtao Li; Jeffrey L. Ebersole; Chifu B. Huang

ABSTRACT Although oral coinfections (e.g., periodontal disease) are highly prevalent in human immunodeficiency virus type 1-positive (HIV-1+) patients and appear to positively correlate with viral load levels, the potential for oral bacteria to induce HIV-1 reactivation in latently infected cells has received little attention. We showed that HIV-1 long terminal repeat (LTR) promoter activation can be induced by periodontopathogens in monocytes/macrophages; nevertheless, the mechanisms involved in this response remain undetermined. Since Toll-like receptor 2 (TLR2), TLR4, and TLR9 activation have been involved in HIV-1 recrudescence, we sought to determine the role of these TLRs in HIV-1 reactivation induced by the periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis using BF24 monocytes/macrophages stably transfected with the HIV-1 promoter driving chloramphenicol acetyltransferase (CAT) expression and THP89GFP cells, a model of HIV-1 latency. We demonstrated that TLR9 activation by F. nucleatum and TLR2 activation by both bacteria appear to be involved in HIV-1 reactivation; however, TLR4 activation had no effect. Moreover, the autocrine activity of tumor necrosis factor alpha (TNF-α) but not interleukin-1β (IL-1β) produced in response to bacteria could impact viral reactivation. The transcription factors NF-κB and Sp1 appear to be positively regulating HIV-1 reactivation induced by these oral pathogens. These results suggest that oral Gram-negative bacteria (F. nucleatum and P. gingivalis) associated with oral and systemic chronic inflammatory disorders enhance HIV-1 reactivation in monocytes/macrophages through TLR2 and TLR9 activation in a mechanism that appears to be transcriptionally regulated. Increased bacterial growth and emergence of these bacteria or their products accompanying chronic oral inflammatory diseases could be risk modifiers for viral replication, systemic immune activation, and AIDS progression in HIV-1+ patients.


Clinical and Vaccine Immunology | 2010

HIV-1 reactivation induced by periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis involves TLR2 and TLR9 activation in monocytes/macrophages

Octavio A. Gonzalez; Mengtao Li; Jeffrey L. Ebersole; Chifu B. Huang

ABSTRACT Although oral coinfections (e.g., periodontal disease) are highly prevalent in human immunodeficiency virus type 1-positive (HIV-1+) patients and appear to positively correlate with viral load levels, the potential for oral bacteria to induce HIV-1 reactivation in latently infected cells has received little attention. We showed that HIV-1 long terminal repeat (LTR) promoter activation can be induced by periodontopathogens in monocytes/macrophages; nevertheless, the mechanisms involved in this response remain undetermined. Since Toll-like receptor 2 (TLR2), TLR4, and TLR9 activation have been involved in HIV-1 recrudescence, we sought to determine the role of these TLRs in HIV-1 reactivation induced by the periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis using BF24 monocytes/macrophages stably transfected with the HIV-1 promoter driving chloramphenicol acetyltransferase (CAT) expression and THP89GFP cells, a model of HIV-1 latency. We demonstrated that TLR9 activation by F. nucleatum and TLR2 activation by both bacteria appear to be involved in HIV-1 reactivation; however, TLR4 activation had no effect. Moreover, the autocrine activity of tumor necrosis factor alpha (TNF-α) but not interleukin-1β (IL-1β) produced in response to bacteria could impact viral reactivation. The transcription factors NF-κB and Sp1 appear to be positively regulating HIV-1 reactivation induced by these oral pathogens. These results suggest that oral Gram-negative bacteria (F. nucleatum and P. gingivalis) associated with oral and systemic chronic inflammatory disorders enhance HIV-1 reactivation in monocytes/macrophages through TLR2 and TLR9 activation in a mechanism that appears to be transcriptionally regulated. Increased bacterial growth and emergence of these bacteria or their products accompanying chronic oral inflammatory diseases could be risk modifiers for viral replication, systemic immune activation, and AIDS progression in HIV-1+ patients.


Inflammation Research | 2011

Polybacterial challenge effects on cytokine/chemokine production by macrophages and dendritic cells

Chifu B. Huang; Y. Altimova; S. Strange; Jeffery L. Ebersole

ObjectiveTo investigate the polymicrobial infection of periodontal disease, which elicits inflammatory mediators/cytokines/chemokines in the local gingival tissues, and a polybacterial challenge of antigen-presenting cells, e.g. macrophages and dendritic cells (DCs), at the mucosal surface.Materials and methodsThe cytokine/chemokine profiles of human macrophages and DCs in response to polybacterial challenges were investigated.ResultsOral Gram-negative bacteria elicited significantly greater IL-8 levels from macrophages, compared to Gram-positive bacteria. Gram-positive bacteria did not show synergism in inducing this chemokine from macrophages. In contrast, pairs of oral Gram-negative bacteria elicited synergistic production of IL-8 by macrophages. Similar results were not observed with TNFα, which only appeared additive with the polybacterial challenge. Selected Gram-negative bacterial pairs synergized in IL-6 production by immature DCs. In mature DCs (mDCs), a Porphyromonas gingivalis/Fusobacterium nucleatum and Porphyromonas intermedia/F. nucleatum polybacterial challenge resulted in significant synergism for IL-6 and TNFα levels. However, only the Pi/Fn combination synergized for IL-12 production and there appeared to be no polybacterial effect on IL-10 production by the mDCs.ConclusionsThese results indicate that a polybacterial challenge of cells linking innate and adaptive immune responses results in varied response profiles that are dependent upon the characteristics of the microorganisms that are components of the polybacterial complex.


Immunological Investigations | 2015

Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues

Octavio A. Gonzalez; Michael John Novak; Sreenatha Kirakodu; Arnold J. Stromberg; R. Nagarajan; Chifu B. Huang; Kuey-Chu Chen; Luis Orraca; J. Martinez-Gonzalez; Jeffrey L. Ebersole

Recent evidence has determined a phenotypic and functional heterogeneity for macrophage populations. This plasticity of macrophage function has been related to specific properties of subsets (M1 and M2) of these cells in inflammation, adaptive immune responses and resolution of tissue destructive processes. This investigation hypothesized that targeted alterations in the distribution of macrophage phenotypes in aged individuals, and with periodontitis would be skewed towards M1 inflammatory macrophages in gingival tissues. The study used a non-human primate model to evaluate gene expression profiles as footprints of macrophage variation in healthy and periodontitis gingival tissues from animals 3–23 years of age and in periodontitis tissues in adult and aged animals. Significant increases in multiple genes reflecting overall increases in macrophage activities were observed in healthy aged tissues, and were significantly increased in periodontitis tissues from both adults and aged animals. Generally, gene expression patterns for M2 macrophages were similar in healthy young, adolescent and adult tissues. However, modest increases were noted in healthy aged tissues, similar to those seen in periodontitis tissues from both age groups. M1 macrophage gene transcription patterns increased significantly over the age range in healthy tissues, with multiple genes (e.g. CCL13, CCL19, CCR7 and TLR4) significantly increased in aged animals. Additionally, gene expression patterns for M1 macrophages were significantly increased in adult health versus periodontitis and aged healthy versus periodontitis. The findings supported a significant increase in macrophages with aging and in periodontitis. The primary increases in both healthy aged tissues and, particularly periodontitis tissues appeared in the M1 phenotype.


Oral Microbiology and Immunology | 2009

Oral bacteria induce a differential activation of human immunodeficiency virus-1 promoter in T cells, macrophages and dendritic cells

Chifu B. Huang; K. A. Emerson; Octavio A. Gonzalez; J. L. Ebersole

INTRODUCTION The human immunodeficiency virus (HIV) can integrate into T cells, macrophages and dendritic cells resulting in a latent infection. Reports have also demonstrated that various microbial and host cell factors can trigger HIV reactivation leading to HIV recrudescence, potentially undermining highly active antiretroviral therapies. METHODS This study evaluated the capacity of oral bacteria associated with chronic periodontal infections to stimulate HIV promoter activation in various cell models of HIV latency. RESULTS T cells (1G5) challenged with oral bacteria demonstrated a dose-response of HIV promoter activation with a subset of the bacteria, as well as kinetics that were generally similar irrespective of the stimuli. Direct bacterial challenge of the T cells resulted in increased activation of approximately 1.5- to 7-fold over controls. Challenge of macrophages (BF24) indicated different kinetics for individual bacteria and resulted in consistent increases in promoter activation of five fold to six fold over basal levels for all bacteria except Streptococcus mutans. Dendritic cells showed increases in HIV reactivation of 7- to 34-fold specific for individual species of bacteria. CONCLUSION These results suggested that oral bacteria have the capability to reactivate HIV from latently infected cells, showing a relationship of mature dendritic cells > immature dendritic cells > macrophages > or = T cells. Expression of various pattern recognition receptors on these various cell types may provide insight into the primary receptors/signaling pathways used for reactivation by the bacteria.


Immunology | 2011

Polybacterial challenge enhances HIV reactivation in latently infected macrophages and dendritic cells

Chifu B. Huang; Yelena V. Alimova; Samantha Strange; Jeffrey L. Ebersole

A polymicrobial infection comprising subgingival biofilms is the trigger for the chronic immunoinflammatory lesions of periodontitis. These microbial biofilms interface with host immune cells that increase with progressing disease and could result in HIV reactivation in HIV‐1‐infected patients. Previous reports have focused on the ability of monospecies challenge of macrophages and dendritic cells to detail molecular aspects of their detection and signalling pathways. This study provides a seminal description of the responses of macrophages and dendritic cells to a polybacterial challenge using various oral bacteria as prototype stimuli to examine these response characteristics. The investigation employed a model of HIV‐promoter activation and reactivation of HIV viral replication. Oral Gram‐negative bacteria elicited significantly greater levels of HIV promoter activation and viral replication from all cell types, compared with Gram‐positive bacteria. Selected combinations of oral Gram‐negative bacteria elicited synergistic HIV promoter activation and viral replication in macrophages and immature dendritic cells. In mature dendritic cells, there was no synergism in HIV promoter activation and viral replication. Gram‐positive bacteria showed no synergism in any cell model. These findings support the importance of determining the characteristics and impact of polybacterial challenges on immune cells to clarify the potential immune recognition and antigen processing that can occur in the oral cavity.


Cellular Immunology | 2011

HIV-1 reactivation in HIV-latently infected dendritic cells by oral microorganisms and LPS.

Chifu B. Huang; Yelena V. Alimova; Jeffrey L. Ebersole

Dendritic cells are critical components of the host defense system that play pivotal role in linking innate immunity to adaptive immune responses. In the role of interfacing with pathogens through the action of surface pattern-recognition receptors, dendritic cells are a potential target for retroviral infection and latency. Dendritic cells are a long-lived reservoir of latent virus in HIV (human immunodeficiency virus)-infected patients. It is hypothesized that HIV-latently infected dendritic cells would be stimulated by oral bacteria leading to reactivation of HIV. In our HIV-latently infected dendritic cell models, of both promoter activation and HIV production, significant differences were observed among the bacterial species in their ability to stimulate HIV reactivation. The experimental data support the hypothesis that oral bacteria related to periodontal infections could trigger latently infected dendritic cells in gingival tissues and contribute to HIV recrudescence and undermining anti-retroviral therapy.


Fems Immunology and Medical Microbiology | 2016

Macrophage polarization in response to oral commensals and pathogens.

Chifu B. Huang; Yelena V. Alimova; Jeffrey L. Ebersole

Macrophages have been identified in the periodontium. Data have phenotypically described these cells, demonstrated changes with progressing periodontal disease, and identified their ability to function in antigen-presentation critical for adaptive immune responses to individual oral bacterium. Recent evidence has emphasized an important role for the plasticity of macrophage phenotypes, not only in the resulting function of these cells in various tissues, but also clear differences in the stimulatory signals that result in M1 (classical activation, inflammatory) and M2 (alternative activation/deactivated, immunomodulatory) cells. This investigation hypothesized that the oral pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans induce M1-type cells, while oral commensal bacteria primarily elicit macrophage functions consistent with an M2 phenotype. However, we observed that the M1 output from P. gingivalis challenge, showed exaggerated levels of pro-inflammatory cytokines, with a much lower production of chemokines related to T-cell recruitment. This contrasted with A. actinomycetemcomitans infection that increased both the pro-inflammatory cytokines and T-cell chemokines. Thus, it appears that P. gingivalis, as an oral pathogen, may have a unique capacity to alter the programming of the M1 macrophage resulting in a hyperinflammatory environment and minimizing the ability for T-cell immunomodulatory influx into the lesions.


Molecular Oral Microbiology | 2010

Supernatants from oral epithelial cells and gingival fibroblasts modulate Human Immunodeficiency Virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages

Octavio A. Gonzalez; J. L. Ebersole; Chifu B. Huang

Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes/macrophages, albeit this effect is most notable following direct stimulation of the cells with oral gram-negative bacteria.

Collaboration


Dive into the Chifu B. Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Strange

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge