Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chih-Che Wu is active.

Publication


Featured researches published by Chih-Che Wu.


Analytical Chemistry | 2008

Selective Extraction and Enrichment of Multiphosphorylated Peptides Using Polyarginine-Coated Diamond Nanoparticles

Chia-Kai Chang; Chih-Che Wu; Yi-Sheng Wang; Huan-Cheng Chang

Despite recent advances in phosphopeptide research, detection and characterization of multiply phosphorylated peptides have been a challenge. This work presents a new strategy that not only can effectively extract phosphorylated peptides from complex samples but also can selectively enrich multiphosphorylated peptides for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Polyarginine-coated diamond nanoparticles are the solid-phase extraction supports used for this purpose. The supports show an exceptionally high affinity for multiphosphorylated peptides due to multiple arginine-phosphate interactions. The efficacy of this method was demonstrated by analyzing a small volume (50 microL) of tryptic digests of proteins such as beta-casein, alpha-casein, and nonfat milk at a concentration as low as 1 x 10 (-9) M. The concentration is markedly lower than that can be achieved by using other currently available technologies. We quantified the enhanced selectivity and detection sensitivity of the method using mixtures composed of mono- and tetraphosphorylated peptide standards. This new affinity-based protocol is expected to find useful applications in characterizing multiple phosphorylation sites on proteins of interest in complex and dilute analytes.


Proteomics | 2012

Efficient enrichment of phosphopeptides by magnetic TiO2-coated carbon-encapsulated iron nanoparticles

Yi Y. Zeng; Huang-Juo Chen; Kai J. Shiau; Shain-Un Hung; Yi-Sheng Wang; Chih-Che Wu

Titanium dioxide (TiO2) has been widely used for phosphopeptide enrichment. Several approaches have been reported to produce magnetic TiO2 affinity probes. In this report, we present a facile approach to immobilize TiO2 onto poly(acrylic acid)‐functionalized magnetic carbon‐encapsulated iron nanoparticles as affinity probes for efficient enrichment of phosphopeptides. By using the new magnetic TiO2 affinity probes, denoted as TiO2‐coated Fe@CNPs, rapid and effective MALDI‐TOF MS profiling of phosphopeptides was demonstrated in different model systems such as tryptic digests of β‐casein, and complex β‐casein/BSA mixture. The TiO2‐coated Fe@CNPs out‐performed the commercial TiO2‐coated magnetic beads for detection of phosphopeptides from tryptic digests of β‐casein/BSA mixture with a molar ratio of 1:100. The new TiO2‐coated magnetic probes were also proven to be applicable for real life samples. The magnetic TiO2‐coated Fe@CNPs were employed to selectively isolate phosphopeptides from tryptic digests of HeLa cell lysates and out‐performed the commercial magnetic TiO2 beads in the number of identified phosphopeptides and phosphorylation sites. In a 200‐μg equivalent of HeLa cell lysates, we identified 1415 unique phosphopeptides and 1093 phosphorylation sites, indicating the good performance of the new approach.


Proteomics | 2010

Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: An integrated approach to explore the cysteine oxidation

Yuan-Chang Chang; Chien-Ning Huang; Chia-Hung Lin; Huan-Cheng Chang; Chih-Che Wu

Oxidation of thiol proteins, which results in conversion of cysteine residues to cysteine sulfenic, sulfinic or sulfonic acids, is an important posttranslational control of protein function in cells. To facilitate the analysis of this process with MALDI‐MS, we have developed a method for selective enrichment and identification of peptides containing cysteine sulfonic acid (sulfopeptides) in tryptic digests of proteins based on ionic affinity capture using polyarginine‐coated nanodiamonds as high‐affinity probes. The method was applied to selectively concentrate sulfopeptides from either a highly dilute solution or a complex peptide mixture in which the abundance of the sulfonated analyte is as low as 0.02%. The polyarginine‐coated probes exhibit a higher affinity for peptides containing multiple sulfonic acids than peptides containing single sulfonic acid. The limit of the detection is in the femtomole range, with the MALDI‐TOF mass spectrometer operating in the negative ion mode. The results show that the new approach has good specificity even in the presence of phosphopeptides. An application of this method for selective enrichment and structural identification of sulfopeptides is demonstrated with the tryptic digests of performic‐acid‐oxidized BSA.


Journal of the American Society for Mass Spectrometry | 2012

N-(1-Naphthyl) Ethylenediamine Dinitrate: A New Matrix for Negative Ion MALDI-TOF MS Analysis of Small Molecules

Rui Chen; Suming Chen; Caiqiao Xiong; Xunlei Ding; Chih-Che Wu; Huan-Cheng Chang; Shaoxiang Xiong; Zongxiu Nie

An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules (m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range (m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.


Analytical Chemistry | 2008

Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: microwave-assisted deglycosylation and one-step purification with diamond nanoparticles.

Yan-Kai Tzeng; Cheng-Chun Chang; Chien-Ning Huang; Chih-Che Wu; Chau-Chung Han; Huan-Cheng Chang

A streamlined protocol has been developed to accelerate, simplify, and enhance matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) of neutral underivatized glycans released from glycoproteins. It involved microwave-assisted enzymatic digestion and release of glycans, followed by rapid removal of proteins and peptides with carboxylated/oxidized diamond nanoparticles, and finally treating the analytes with NaOH before mixing them with acidic matrix (such as 2,5-dihydroxybenzoic acid) to suppress the formation of both peptide and potassiated oligosaccharide ions in MS analysis. The advantages of this protocol were demonstrated with MALDI-TOF-MS of N-linked glycans released from ovalbumin and ribonuclease B.


Nature Nanotechnology | 2017

Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

Simon Haziza; Nitin Mohan; Yann Loe-Mie; Aude-Marie Lepagnol-Bestel; Sophie Massou; Marie-Pierre Adam; Xuan Loc Le; Julia Viard; Christine Plancon; Rachel Daudin; Pascale Koebel; Emilie Dorard; Christiane Rose; Feng-Jen Hsieh; Chih-Che Wu; Brigitte Potier; Yann Herault; Carlo Sala; Aiden Corvin; Bernadette Allinquant; Huan-Cheng Chang; François Treussart; Michel Simonneau

Brain diseases such as autism and Alzheimers disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.


Analytical Chemistry | 2013

Quantitative Analysis of Oligosaccharides Derived from Sulfated Glycosaminoglycans by Nanodiamond-Based Affinity Purification and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Chih-Chien Hsieh; Jiun You Guo; Shain-Un Hung; Rui Chen; Zongxiu Nie; Huan-Cheng Chang; Chih-Che Wu

Degraded fragments of sulfated glycosaminoglycans (GAGs) are key reporters for profiling the burden of mucopolysaccharidosis (MPS) disease at baseline and during therapy. Here, we present a high-throughput assay, which combines microwave-assisted degradation, solid-phase affinity purification, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), for quantitative analysis of sulfated oligosaccharides in biological samples. First, sulfated oligosaccharides such as chondroitin-4-sulfate (CS) were efficiently isolated from highly diluted solutions or spiked artificial cerebrospinal fluid (aCSF) using polyarginine-coated nanodiamonds (PA-coated NDs) as affinity sorbents. Next, they were degraded to disaccharides through microwave-assisted methanolysis or enzymatic digestion for subsequent MALDI-TOF MS analysis. The reaction times for GAG depolymerization were significantly reduced from a few hours to less than 7 min under the microwave irradiation. Deuterium-labeled internal standards were then mixed with the CS-derived disaccharides for quantitative analysis by MALDI-TOF MS using the N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) matrix. The new assay is facile, specific (with distinct chlorine-isotope trait markers), sensitive (with a detection limit of ~70 pg), and potentially useful for clinical diagnosis of MPS.


Analyst | 2011

Nanodiamond-based two-step sampling of multiply and singly phosphorylated peptides for MALDI-TOF mass spectrometry analysis

Kai Jung Shiau; Shain-Un Hung; Hsiao-Wen Lee; Chih-Che Wu

Simultaneous detection of multiply and singly phosphorylated peptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is challenging because of suppression effects during ionization. In oder to overcome this problem, this study presents a new approach to improve the detection of phosphopeptides by stepwise enrichment using polyarginine-coated (PA-coated) and titanium dioxide-coated (TiO(2)-coated) nanodiamonds for fractionation of multiply and singly phosphorylated peptides prior to on-probe MALDI MS analysis. The feasibility of this approach was demonstrated using synthetic peptides containing different numbers of phosphate groups, tryptic digests of α-casein, β-casein, and complex protein mixtures. The high specificity of the approach is shown in its effective enrichment and fractionation of phosphopeptides from the digest of β-casein and bovine serum albumin at a molar ratio as low as 1 : 1000, which out-performs the commercial Fe(3+)-IMAC and TiO(2) isolation kits. It offers a simple and effective alternative for the fractionation and identification of multiply and singly phosphorylated peptides by MALDI MS and allows for deduction of more information from limited starting materials.


Angewandte Chemie | 2017

Measuring Nanoscale Thermostability of Cell Membranes with Single Gold–Diamond Nanohybrids

Pei-Chang Tsai; Chandra Prakash Epperla; Jo‐Shan Huang; Oliver Y. Chen; Chih-Che Wu; Huan-Cheng Chang

Much of the current understanding of thermal effects in biological systems is based on macroscopic measurements. There is little knowledge about the local thermostability or heat tolerance of subcellular components at the nanoscale. Herein, we show that gold nanorod-fluorescent nanodiamond (GNR-FND) hybrids are useful as a combined nanoheater/nanothermometer in living cells. With the use of a 594 nm laser for both heating and probing, we measure the temperature changes by recording the spectral shifts of the zero-phonon lines of negatively charged nitrogen-vacancy centers in FNDs. The technique allows us to determine the rupture temperatures of individual membrane nanotubes in human embryonic kidney cells, as well as to generate high temperature gradients on the cell membrane for photoporation and optically controlled hyperthermia. Our results demonstrate a new paradigm for hyperthermia research and application.


Journal of the American Society for Mass Spectrometry | 2009

Synchronized dual-polarity electrospray ionization mass spectrometry.

Han-Kwang Chen; Chia-Kai Chang; Chih-Che Wu; Ming-Chia Huang; Yi-Sheng Wang

This work describes the synchronized dual-polarity (DP) electrospray ionization (ESI) method and demonstrates the first DP ESI mass spectra obtained using two mass spectrometers. Stable double Taylor cones were produced by applying two counter electric voltages with opposite polarities to one electrosprayer. The development of double Taylor cones required higher extraction voltages than conventional ESI, but DP ESI worked effectively at liquid flow rate range three times wider than conventional ESI. Using pure methanol, the emission currents of the two cones were neutralized and no current was drawn from the sprayer. Synchronized DP mass spectra were obtained using electrospray calibrants dissolved in methanol solution of low water content. For bovine insulin with conventional electrospray solution, the gas-assisted electrospray delivered satisfactory sensitivity and stability for routine mass analyses.

Collaboration


Dive into the Chih-Che Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shain-Un Hung

National Chi Nan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chien-Ning Huang

National Chi Nan University

View shared research outputs
Top Co-Authors

Avatar

Jiun You Guo

National Chi Nan University

View shared research outputs
Top Co-Authors

Avatar

Nitin Mohan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge