Chih-Chin Tsou
National Tsing Hua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chih-Chin Tsou.
Inorganic Chemistry | 2008
Tsai-Te Lu; Chih-Chin Tsou; Hsiao-Wen Huang; I-Jui Hsu; Jin-Ming Chen; Ting-Shen Kuo; Yu Wang; Wen-Feng Liaw
The anionic syn-/ anti-[Fe(mu-SEt)(NO) 2] 2 (-) ( 2a) were synthesized and characterized by IR, UV-vis, EPR, and X-ray diffraction. The geometry of the [Fe(mu-S) 2Fe] core is rearranged in going from [{Fe(NO) 2} (9)-{Fe(NO) 2} (9)] Roussins red ester [Fe(mu-SEt)(NO) 2] 2 ( 1a) (Fe...Fe distance of 2.7080(5) A) to the [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] complex 2a (Fe...Fe distance of 2.8413(6) A) to minimize the degree of Fe...Fe interaction to stabilize complex 2a. On the basis of X-ray absorption (Fe K- and L-edge), EPR and SQUID, complex 2a is best described as the anionic [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] Roussins red ester with the fully delocalized mixed-valence core. The complete bridged-thiolate cleavage yielded DNIC [(EtS) 2Fe(NO) 2] (-) ( 3a) in the reaction of 2 equiv of [EtS] (-) and complex 1a, whereas reaction of 2 equiv of [(t)BuS] (-) with [Fe(micro-S (t)Bu)(NO) 2] 2 (1b) gave DNIC [((t)BuS) 2Fe(NO) 2] (-) (3b) and the anionic Roussins red ester [Fe(mu-S (t)Bu)(NO) 2] 2 (-) (2b) through bridged-thiolate cleavage in combination with reduction. In contrast to the inertness of DNIC 3b toward complex 1b, nucleophile DNIC 3a induces the reduction of complex 1a to produce the anionic Roussins red ester 2a. Interestingly, dissolution of complex 3a in MeOH at 298 K finally led to the formation of a mixture of complexes 2a and 3a, in contrast to the dynamic equilibrium of complexes 3b and 1b observed in dissolution of complex 3b in MeOH. These results illustrate the aspect of how the steric structures of nucleophiles ([EtS] (-) vs [ (t)BuS] (-) and [(EtS) 2Fe(NO)2](-) vs [((t)BuS) 2Fe(NO)2] (-)) function to determine the reaction products.
Accounts of Chemical Research | 2015
Ming-Li Tsai; Chih-Chin Tsou; Wen-Feng Liaw
Dinitrosyl iron complexes (DNICs) have been recognized as storage and transport agents of nitric oxide capable of selectively modifying crucial biological targets via its distinct redox forms (NO(+), NO(•) and NO(-)) to initiate the signaling transduction pathways associated with versatile physiological and pathological responses. For decades, the molecular geometry and spectroscopic identification of {Fe(NO)2}(9) DNICs ({Fe(NO)x}(n) where n is the sum of electrons in the Fe 3d orbitals and NO π* orbitals based on Enemark-Feltham notation) in biology were limited to tetrahedral (CN = 4) and EPR g-value ∼2.03, respectively, due to the inadequacy of structurally well-defined biomimetic DNICs as well as the corresponding spectroscopic library accessible in biological environments. The developed synthetic methodologies expand the scope of DNICs into nonclassical square pyramidal and trigonal bipyramidal (CN = 5) and octahedral (CN = 6) {Fe(NO)2}(9) DNICs, as well as two/three accessible redox couples for mononuclear {Fe(NO)2}(9/10) and dinuclear [{Fe(NO)2}(9/10)-{Fe(NO)2}(9/10)] DNICs with biologically relevant S/O/N ligation modes. The unprecedented molecular geometries and electronic states of structurally well-defined DNIC models provide the foundation to construct a spectroscopic library for uncovering the identity of DNICs in biological environments as well as to determine the electronic structures of the {Fe(NO)2} core in qualitative and quantitative fashions by a wide range of spectroscopic methods. On the basis of (15)N NMR, electron paramagnetic resonance (EPR), IR, cyclic voltammetry (CV), superconducting quantum interference device (SQUID) magnetometry, UV-vis, single-crystal X-ray crystallography, and Fe/S K-edge X-ray absorption and Fe Kβ X-ray emission spectroscopies, the molecular geometry, ligation modes, nuclearity, and electronic states of the mononuclear {Fe(NO)2}(9/10) and dinuclear [{Fe(NO)2}(9/10)-{Fe(NO)2}(9/10)] DNICs could be characterized and differentiated. In addition, Fe/S K-edge X-ray absorption spectroscopy of tetrahedral DNICs deduced the qualitative assignment of Fe/NO oxidation states of {Fe(NO)2}(9) DNICs as a resonance hybrid of {Fe(II)((•)NO)(NO(-))}(9) and {Fe(III)(NO(-))2}(9) electronic states; the quantitative NO oxidation states of [(PhS)3Fe(NO)](-), [(PhS)2Fe(NO)2](-), and [(PhO)2Fe(NO)2](-) were further achieved by newly developed valence to core Fe Kβ X-ray emission spectroscopy as -0.58 ± 0.18, -0.77 ± 0.18, and -0.95 ± 0.18, respectively. The in-depth elaborations of electronic structures provide credible guidance to elucidate (a) the essential roles of DNICs modeling the degradation and repair of [Fe-S] clusters under the presence of NO, (b) transformation of DNIC into S-nitrosothiol (RSNO)/N-nitrosamine (R2NNO) and NO(+)/NO(•)/NO(-), (c) nitrite/nitrate activation producing NO regulated by redox shuttling of {Fe(NO)2}(9) and {Fe(NO)2}(10) DNICs, and (d) DNICs as H2S storage and cellular permeation pathway of DNIC/Roussins red ester (RRE) for subsequent protein S-nitrosylation. The consolidated efforts on biomimetic synthesis, inorganic spectroscopy, chemical reactivity, and biological functions open avenues to the future designs of DNICs serving as stable inorganic NO(+)/NO(•)/NO(-) donors for pharmaceutical applications.
Inorganic Chemistry | 2008
Hsiao-Wen Huang; Chih-Chin Tsou; Ting-Shen Kuo; Wen-Feng Liaw
The anionic {Fe(NO)2}(9) DNIC[(NO)2Fe(C3H3N2)2](-) (2) (C3H3N2 = deprotonated imidazole) containing the deprotonated imidazole-coordinated ligands and DNICs [(NO)2Fe(C3H3N2)(SR)](-) (R = (t)Bu(3), Et(4), Ph(5)) containing the mixed deprotonated imidazole-thiolate coordinated ligands, respectively, were synthesized by thiol protonation or thiolate(s) ligand-exchange reaction. The anionic {Fe(NO)2}(9) DNICs 2- 5 were characterized by IR, UV-vis, EPR, and single-crystal X-ray diffraction. The facile transformation among the anionic {Fe(NO)2}(9) DNICs 2- 5 and [(NO)2Fe(S(t)Bu)2](-)/[(NO)2Fe(SEt)2](-)/[(NO)2Fe(SPh)2](-) was demonstrated in this systematic study. Of importance, the distinct electron-donating ability of thiolates serve to regulate the stability of the anionic {Fe(NO)2}(9) DNICs and the ligand-substitution reactions of DNICs. At 298 K, DNIC 2 exhibits the nine-line EPR signal with g = 2.027 (aN(NO) = 2.20 and aN(Im-H) = 3.15 G; Im-H = deprotonated imidazole) and DNIC 3 displays the nine-line signals with g = 2.027 (aN(NO) = 2.35 and aN(Im-H) = 4.10 G). Interestingly, the EPR spectrum of complex 4 exhibits a well-resolved 11-line pattern with g = 2.027 (aN(NO) = 2.50, aN(Im-H) = 4.10 G, and aH = 1.55 G) at 298 K. The EPR spectra (the pattern of hyperfine splitting) in combination with IR nu NO spectra (DeltanuNO = the separation of NO stretching frequencies, DeltanuNO = approximately 62 cm (-1) for 2 vs approximately 50 cm(-1) for 3- 5 vs approximately 43 cm(-1) for [(NO)2Fe(S(t)Bu)2](-)/[(NO)2Fe(SEt)2](-)/[(NO)2Fe(SPh)2](-)) may serve as an efficient tool for the discrimination of the existence of the anionic {Fe(NO)2}(9) DNICs containing the different ligations [N,N]/[N,S]/[S,S].
Journal of the American Chemical Society | 2014
Chih-Chin Tsou; Wei-Chun Chiu; Chun-Hung Ke; Jia-Chun Tsai; Yun-Ming Wang; Ming-Hsi Chiang; Wen-Feng Liaw
Spontaneous transformation of the thermally stable [HS](-)-bound {Fe(NO)2}(9) dinitrosyl iron complex (DNIC) [(HS)2Fe(NO)2](-) (1) into [(NO)2Fe(μ-S)]2(2-) (Roussins red salt (RRS)) along with release of H2S, probed by NBD-SCN (NBD = nitrobenzofurazan), was observed when DNIC 1 was dissolved in water at ambient temperature. The reversible transformation of RRS into DNIC 1 (RRS → DNIC 1) in the presence of H2S was demonstrated. In contrast, the thermally unstable hydrosulfide-containing mononitrosyl iron complex (MNIC) [(HS)3Fe(III)(NO)](-) (3) and [Fe(III)(SH)4](-) (5) in THF/DMF spontaneously dimerized into the first structurally characterized Fe(III)-hydrosulfide complexes [(NO)(SH)Fe(μ-S)]2(2-) (4) with two {Fe(NO)}(7) motifs antiferromagnetically coupled and [(SH)2Fe(μ-S)]2(2-) (6) resulting from two Fe(III) (S = 5/2) centers antiferromagnetically coupled to yield an S = 0 ground state with thermal occupancy of higher spin states, respectively. That is, the greater the number of NO ligands bound to [2Fe2S], the larger the antiferromagnetic coupling constant. On the basis of DFT computation and the experimental (and calculated) reduction potential (E1/2) of complexes 1, 3, and 5, the NO-coordinate ligand(s) of complexes 1 and 3 serves as the stronger electron-donating ligand, compared to thiolate, to reduce the effective nuclear charge (Zeff) of the iron center and prevent DNIC 1 from dimerization in an organic solvent (MeCN).
Journal of the American Chemical Society | 2008
Chih-Chin Tsou; Zong-Sian Lin; Tsai-Te Lu; Wen-Feng Liaw
Transformation of dinitrosyl iron complexes (DNICs) [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) into [4Fe-4S] clusters [Fe(4)S(4)(SPh)(4)](2-) in the presence of [Fe(SPh)(4)](2-/1-) and S-donor species S(8) via the reassembling process ([(NO)(2)Fe(SR)(2)](-) --> [Fe(4)S(3)(NO)(7)](-) (1)/[Fe(4)S(3)(NO)(7)](2-) (2) --> [Fe(4)S(4)(NO)(4)](2-) (3) --> [Fe(4)S(4)(SPh)(4)](2-) (5)) was demonstrated. Reaction of [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) with S(8) in THF, followed by the addition of HBF(4) into the mixture solution, yielded complex [Fe(4)S(3)(NO)(7)](-) (1). Complex [Fe(4)S(3)(NO)(7)](2-) (2), obtained from reduction of complex 1 by [Na][biphenyl], was converted into complex [Fe(4)S(4)(NO)(4)](2-) (3) along with byproduct [(NO)(2)Fe(SR)(2)](-) via the proposed [Fe(4)S(3)(SPh)(NO)(4)](2-) intermediate upon treating complex 2 with 1.5 equiv of [Fe(SPh)(4)](2-) and the subsequent addition of 1/8 equiv of S(8) in CH(3)CN at ambient temperature. Complex 3 was characterized by IR, UV-vis, and single-crystal X-ray diffraction. Upon addition of complex 3 to the CH(3)CN solution of [Fe(SPh)(4)](-) in a 1:2 molar ratio at ambient temperature, the rapid NO radical-thiyl radical exchange reaction between complex 3 and the biomimetic oxidized form of rubredoxin [Fe(SPh)(4)](-) occurred, leading to the simultaneous formation of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) (5) and DNIC [(NO)(2)Fe(SPh)(2)](-). This result demonstrates a successful biomimetic reassembly of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) from NO-modified [Fe-S] clusters, relevant to the repair of DNICs derived from nitrosylation of [4Fe-4S] clusters of endonuclease III back to [4Fe-4S] clusters upon addition of ferrous ion, cysteine, and IscS.
Journal of the American Chemical Society | 2013
Chih-Chin Tsou; Wan-Lin Yang; Wen-Feng Liaw
The reversible transformations [(Bim)3Fe(κ(2)-O2N)][BF4] (3) <-> [(Bim)3Fe(NO)(κ(1)-ONO)][BF4]2 (4) were demonstrated and characterized. Transformation of O,O-nitrito-containing complex 3 into [(Bim)3Fe(μ-O)(μ-OAc)Fe(Bim)3](3+) (5) along with the release of NO and H2O triggered by 1 equiv of AcOH implicates that nitrite-to-nitric oxide conversion occurs, in contrast to two protons needed to trigger nitrite reduction producing NO observed in the protonation of [Fe(II)-nitro] complexes.
Inorganic Chemistry | 2013
Chih-Chin Tsou; Fu-Te Tsai; Huang-Yeh Chen; I-Jui Hsu; Wen-Feng Liaw
A reversible redox reaction ({Fe(NO)(2)}(9) DNIC [(NO)(2)Fe(N(Mes)(TMS))(2)](-) (4) ⇄ oxidized-form DNIC [(NO)(2)Fe(N(Mes)(TMS))(2)] (5) (Mes = mesityl, TMS = trimethylsilane)), characterized by IR, UV-vis, (1)H/(15)N NMR, SQUID, XAS, single-crystal X-ray structure, and DFT calculation, was demonstrated. The electronic structure of the oxidized-form DNIC 5 (S(total) = 0) may be best described as the delocalized aminyl radical [(N(Mes)(TMS))(2)](2)(-•) stabilized by the electron-deficient {Fe(III)(NO(-))(2)}(9) motif, that is, substantial spin is delocalized onto the [(N(Mes)(TMS))(2)](2)(-•) such that the highly covalent dinitrosyl iron core (DNIC) is preserved. In addition to IR, EPR (g ≈ 2.03 for {Fe(NO)(2)}(9)), single-crystal X-ray structure (Fe-N(O) and N-O bond distances), and Fe K-edge pre-edge energy (7113.1-7113.3 eV for {Fe(NO)(2)}(10) vs 7113.4-7113.9 eV for {Fe(NO)(2)}(9)), the (15)N NMR spectrum of [Fe((15)NO)(2)] was also explored to serve as an efficient tool to characterize and discriminate {Fe(NO)(2)}(9) (δ 23.1-76.1 ppm) and {Fe(NO)(2)}(10) (δ -7.8-25.0 ppm) DNICs. To the best of our knowledge, DNIC 5 is the first structurally characterized tetrahedral DNIC formulated as covalent-delocalized [{Fe(III)(NO(-))(2)}(9)-[N(Mes)(TMS)](2)(-•)]. This result may explain why all tetrahedral DNICs containing monodentate-coordinate ligands isolated and characterized nowadays are confined in the {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs in chemistry and biology.
Chemistry: A European Journal | 2015
Shih-Wey Yeh; Chih‐Wei Lin; Bai‐Heng Liu; Chih-Chin Tsou; Ming-Li Tsai; Wen-Feng Liaw
As opposed to the reversible redox reaction ({Fe(NO)2 }(10) reduced-form DNIC [(NO)2 Fe(S(CH2 )3 S)](2-) (1)⇌{Fe(NO)2 }(9) oxidized-form [(NO)2 Fe(S(CH2 )3 S)](-) ), the chemical oxidation of the {Fe(NO)2 }(10) DNIC [(NO)2 Fe(S(CH2 )2 S)](2-) (2) generates the dinuclear {Fe(NO)2 }(9) -{Fe(NO)2 }(9) complex [(NO)2 Fe(μ-SC2 H4 S)2 Fe(NO)2 ](2-) (3) bridged by two terminal [SC2 H4 S](2-) ligands. On the basis of the Fe K-edge pre-edge energy and S K-edge XAS, the oxidation of complex 1 yielding [(NO)2 Fe(S(CH2 )3 S)](-) is predominantly a metal-based oxidation. The smaller S1-Fe1-S2 bond angle of 94.1(1)° observed in complex 1 (S1-Fe1-S2 88.6(1)° in complex 2), compared to the bigger bond angle of 100.9(1)° in the {Fe(NO)2 }(9) DNIC [(NO)2 Fe(S(CH2 )3 S)](-) , may be ascribed to the electron-rich {Fe(NO)2 }(10) DNIC preferring a restricted bite angle to alleviate the electronic donation of the chelating thiolate to the electron-rich {Fe(NO)2 }(10) core. The extended transition state and natural orbitals for chemical valence (ETS-NOCV) analysis on the edt-/pdt-chelated {Fe(NO)2 }(9) and {Fe(NO)2 }(10) DNICs demonstrates how two key bonding interactions, that is, a FeS covalent σ bond and thiolate to the Fe d z 2 charge donation, between the chelating thiolate ligand and the {Fe(NO)2 }(9/10) core could be modulated by the backbone lengths of the chelating thiolate ligands to tune the electrochemical redox potential (E1/2 =-1.64 V for complex 1 and E1/2 =-1.33 V for complex 2) and to dictate structural rearrangement/chemical transformations (S-Fe-S bite angle and monomeric vs. dimeric DNICs).
Journal of the American Chemical Society | 2007
Chih-Chin Tsou; Tsai-Te Lu; Wen-Feng Liaw
Dalton Transactions | 2014
Shih-Wey Yeh; Chih-Chin Tsou; Wen-Feng Liaw