Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chih-Jen Shih is active.

Publication


Featured researches published by Chih-Jen Shih.


Nature Chemistry | 2012

Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

Qing Hua Wang; Zhong Jin; Ki Kang Kim; Andrew J. Hilmer; Geraldine L C Paulus; Chih-Jen Shih; Moon Ho Ham; Javier Sanchez-Yamagishi; Kenji Watanabe; Takashi Taniguchi; Jing Kong; Pablo Jarillo-Herrero; Michael S. Strano

Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO(2) and Al(2)O(3) (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.The chemical functionalization of graphene enables control over electronic properties and sensor recognition sites. However, its study is confounded by an unusually strong influence of the underlying substrate. In this paper, we show a stark difference in the rate of electron transfer chemistry with aryl diazonium salts on monolayer graphene supported on a broad range of substrates. Reactions proceed rapidly when graphene is on SiO_2 and Al_2O_3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The effect is contrary to expectations based on doping levels and can instead be described using a reactivity model accounting for substrate-induced electron-hole puddles in graphene. Raman spectroscopic mapping is used to characterize the effect of the substrates on graphene. Reactivity imprint lithography (RIL) is demonstrated as a technique for spatially patterning chemical groups on graphene by patterning the underlying substrate, and is applied to the covalent tethering of proteins on graphene.


Nature Nanotechnology | 2011

Bi- and trilayer graphene solutions

Chih-Jen Shih; Aravind Vijayaraghavan; Rajasekar Krishnan; Richa Sharma; Jae Hee Han; Moon Ho Ham; Zhong Jin; Shangchao Lin; Geraldine L C Paulus; Nigel F. Reuel; Qing Hua Wang; Daniel Blankschtein; Michael S. Strano

Bilayer and trilayer graphene with controlled stacking is emerging as one of the most promising candidates for post-silicon nanoelectronics. However, it is not yet possible to produce large quantities of bilayer or trilayer graphene with controlled stacking, as is required for many applications. Here, we demonstrate a solution-phase technique for the production of large-area, bilayer or trilayer graphene from graphite, with controlled stacking. The ionic compounds iodine chloride (ICl) or iodine bromide (IBr) intercalate the graphite starting material at every second or third layer, creating second- or third-stage controlled graphite intercolation compounds, respectively. The resulting solution dispersions are specifically enriched with bilayer or trilayer graphene, respectively. Because the process requires only mild sonication, it produces graphene flakes with areas as large as 50 µm(2). Moreover, the electronic properties of the flakes are superior to those achieved with other solution-based methods; for example, unannealed samples have resistivities as low as ∼1 kΩ and hole mobilities as high as ∼400 cm(2) V(-1) s(-1). The solution-based process is expected to allow high-throughput production, functionalization, and the transfer of samples to arbitrary substrates.


Langmuir | 2012

Understanding the pH-Dependent Behavior of Graphene Oxide Aqueous Solutions: A Comparative Experimental and Molecular Dynamics Simulation Study

Chih-Jen Shih; Shangchao Lin; Richa Sharma; Michael S. Strano; Daniel Blankschtein

Understanding the pH-dependent behavior of graphene oxide (GO) aqueous solutions is important to the production of assembled GO or reduced GO films for electronic, optical, and biological applications. We have carried out a comparative experimental and molecular dynamics (MD) simulation study to uncover the mechanisms behind the aggregation and the surface activity of GO at different pH values. At low pH, the carboxyl groups are protonated such that the GO sheets become less hydrophilic and form aggregates. MD simulations further suggest that the aggregates exhibit a GO-water-GO sandwichlike structure and as a result are stable in water instead of precipitating. However, at high pH, the deprotonated carboxyl groups are very hydrophilic such that individual GO sheets prefer to dissolve in bulk water like a regular salt. The GO aggregates formed at low pH are found to be surface-active and do not exhibit characteristic features of surfactant micelles. Our findings suggest that GO does not behave like conventional surfactants in pH 1 and 14 aqueous solutions. The molecular-level understanding of the solution behavior of GO presented here can facilitate and improve the experimental techniques used to synthesize and sort large, uniform GO dispersions in a solution phase.


Nature Materials | 2013

Wetting translucency of graphene

Chih-Jen Shih; Michael S. Strano; Daniel Blankschtein

For the case of water on supported graphene, about 30% of the van der Waals interactions between the water and the substrate are transmitted through the one-atom-thick layer.


ACS Nano | 2014

Tuning On–Off Current Ratio and Field-Effect Mobility in a MoS2–Graphene Heterostructure via Schottky Barrier Modulation

Chih-Jen Shih; Qing Hua Wang; Young-Woo Son; Zhong Jin; Daniel Blankschtein; Michael S. Strano

Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.


Journal of the American Chemical Society | 2011

Molecular Insights into the Surface Morphology, Layering Structure, and Aggregation Kinetics of Surfactant-Stabilized Graphene Dispersions

Shangchao Lin; Chih-Jen Shih; Michael S. Strano; Daniel Blankschtein

The production of graphene with open band gaps for the manufacturing of graphene-based electronic and optical devices requires synthesis methods to either control the number of layers to enrich AB-stacked bilayer or trilayer graphene or control the extent of functionalization of monolayer graphene. Solution-phase dispersion of graphene is promising for both methods to create printable electronics and nanocomposites. However, both methods face common challenges, including controlling the surface morphology, reducing the turbostratic layering, and enhancing the dispersion stability. To address these challenges at the molecular level, we successfully combined molecular simulations, theoretical modeling, and experimental measurements. First, we probed the surface structure and electrostatic potential of monolayer graphene dispersed in a sodium cholate (SC) surfactant aqueous solution, which exhibits 2D sheets partially covered with a monolayer of negatively charged cholate ions. Similar to the case of carbon nanotube functionalization, one may regulate the binding affinity of charged reactants for graphene functionalization by manipulating the surface morphology. Subsequently, we quantified the interactions between two graphene-surfactant assemblies by calculating the potential of mean force (PMF) between two surfactant-covered graphene sheets, which confirmed the existence of a metastable bilayer graphene structure due to the steric hindrance of the confined surfactant molecules. The traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was found to be adequate to explain the long-range electrostatic repulsions between the ionic surfactant-covered graphene sheets but was unable to account for the dominant, short-range steric hindrance imparted by the confined surfactant molecules. Interestingly, one faces a dilemma when using surfactants to disperse and stabilize graphene in aqueous solution: on the one hand, surfactants can stabilize graphene aqueous dispersions, but on the other hand, they prevent the formation of new AB-stacked bilayer and trilayer graphene resulting from the reaggregation process. Finally, the lifetime and time-dependent distribution of various graphene layer types were predicted using a kinetic model of colloid aggregation, and each graphene layer type was further decomposed into subtypes, including the AB-stacked species and various turbostratic species. The kinetic model of colloid aggregation developed here can serve as a useful tool to evaluate the quality of graphene dispersions for subsequent substrate-transferring or functionalization processes.


Nature Communications | 2013

Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning

Zhong Jin; Wei Sun; Yonggang Ke; Chih-Jen Shih; Geraldine L C Paulus; Qing Hua Wang; Bin Mu; Peng Yin; Michael S. Strano

The vision for graphene and other two-dimensional electronics is the direct production of nanoelectronic circuits and barrier materials from a single precursor sheet. DNA origami and single-stranded tiles are powerful methods to encode complex shapes within a DNA sequence, but their translation to patterning other nanomaterials has been limited. Here we develop a metallized DNA nanolithography that allows transfer of spatial information to pattern two-dimensional nanomaterials capable of plasma etching. Width, orientation and curvature can be programmed by specific sequence design and transferred, as we demonstrate for graphene. Spatial resolution is limited by distortion of the DNA template upon Au metallization and subsequent etching. The metallized DNA mask allows for plasmonic enhanced Raman spectroscopy of the underlying graphene, providing information on defects, doping and lattice symmetry. This DNA nanolithography enables wafer-scale patterning of two-dimensional electronic materials to create diverse circuit elements, including nanorings, three- and four-membered nanojunctions, and extended nanoribbons.


ACS Nano | 2017

Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals

Loredana Protesescu; Sergii Yakunin; Sudhir Kumar; Janine Bär; Federica Bertolotti; Norberto Masciocchi; Antonietta Guagliardi; Matthias J. Grotevent; Ivan Shorubalko; Maryna I. Bodnarchuk; Chih-Jen Shih; Maksym V. Kovalenko

Colloidal nanocrystals (NCs) of APbX3-type lead halide perovskites [A = Cs+, CH3NH3+ (methylammonium or MA+) or CH(NH2)2+ (formamidinium or FA+); X = Cl–, Br–, I–] have recently emerged as highly versatile photonic sources for applications ranging from simple photoluminescence down-conversion (e.g., for display backlighting) to light-emitting diodes. From the perspective of spectral coverage, a formidable challenge facing the use of these materials is how to obtain stable emissions in the red and infrared spectral regions covered by the iodide-based compositions. So far, red-emissive CsPbI3 NCs have been shown to suffer from a delayed phase transformation into a nonluminescent, wide-band-gap 1D polymorph, and MAPbI3 exhibits very limited chemical durability. In this work, we report a facile colloidal synthesis method for obtaining FAPbI3 and FA-doped CsPbI3 NCs that are uniform in size (10–15 nm) and nearly cubic in shape and exhibit drastically higher robustness than their MA- or Cs-only cousins with similar sizes and morphologies. Detailed structural analysis indicated that the FAPbI3 NCs had a cubic crystal structure, while the FA0.1Cs0.9PbI3 NCs had a 3D orthorhombic structure that was isostructural to the structure of CsPbBr3 NCs. Bright photoluminescence (PL) with high quantum yield (QY > 70%) spanning red (690 nm, FA0.1Cs0.9PbI3 NCs) and near-infrared (near-IR, ca. 780 nm, FAPbI3 NCs) regions was sustained for several months or more in both the colloidal state and in films. The peak PL wavelengths can be fine-tuned by using postsynthetic cation- and anion-exchange reactions. Amplified spontaneous emissions with low thresholds of 28 and 7.5 μJ cm–2 were obtained from the films deposited from FA0.1Cs0.9PbI3 and FAPbI3 NCs, respectively. Furthermore, light-emitting diodes with a high external quantum efficiency of 2.3% were obtained by using FAPbI3 NCs.


Acta Materialia | 2003

Adaptive phase field simulation of non-isothermal free dendritic growth of a binary alloy

C.W. Lan; Yuchen Chang; Chih-Jen Shih

Efficient adaptive phase field simulation is carried out for a free dendritic growth in a nickel/copper system. The adaptive nature of the present scheme allows the simulation to be performed in an extremely large domain for thermal boundary layer, while keeping fine mesh for the diffusive interface. For isothermal cases, our calculated results agree reasonably well with those of Warren and Boettinger [Acta. Metall. Mater. 43 (1995) 689]. For non-isothermal growth, our results also agree well with those by Loginova et al. [Acta. Mater. Mater. 49 (2001) 573] for using a small domain. However, the domain size used in the previous calculations was too small for heat conduction, so that the calculated results are domain dependent and the dendrite could not grow freely. By choosing an extremely large domain, we have obtained a truly free growth simulation for the first time for a non-isothermal dendrite. The effect of supercooling is also illustrated and discussed.


Nano Letters | 2013

Disorder Imposed Limits of Mono- and Bilayer Graphene Electronic Modification Using Covalent Chemistry

Chih-Jen Shih; Qing Hua Wang; Zhong Jin; Geraldine L C Paulus; Daniel Blankschtein; Pablo Jarillo-Herrero; Michael S. Strano

A central question in graphene chemistry is to what extent chemical modification can control an electronically accessible band gap in monolayer and bilayer graphene (MLG and BLG). Density functional theory predicts gaps in covalently functionalized graphene as high as 2 eV, while this approach neglects the fact that lattice symmetry breaking occurs over only a prescribed radius of nanometer dimension, which we label the S-region. Therefore, high chemical conversion is central to observing this band gap in transport. We use an electrochemical approach involving phenyl-diazonium salts to systematically probe electronic modification in MLG and BLG with increasing functionalization for the first time, obtaining the highest conversion values to date. We find that both MLG and BLG retain their relatively high conductivity after functionalization even at high conversion, as mobility losses are offset by increases in carrier concentration. For MLG, we find that band gap opening as measured during transport is linearly increased with respect to the I(D)/I(G) ratio but remains below 0.1 meV in magnitude for SiO(2) supported graphene. The largest transport band gap obtained in a suspended, highly functionalized (I(D)/I(G) = 4.5) graphene is about 1 meV, lower than our theoretical predictions considering the quantum interference effect between two neighboring S-regions and attributed to its population with midgap states. On the other hand, heavily functionalized BLG (I(D)/I(G) = 1.8) still retains its signature dual-gated band gap opening due to electric-field symmetry breaking. We find a notable asymmetric deflection of the charge neutrality point (CNP) under positive bias which increases the apparent on/off current ratio by 50%, suggesting that synergy between symmetry breaking, disorder, and quantum interference may allow the observation of new transistor phenomena. These important observations set definitive limits on the extent to which chemical modification can control graphene electronically.

Collaboration


Dive into the Chih-Jen Shih's collaboration.

Top Co-Authors

Avatar

Michael S. Strano

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Qing Hua Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel Blankschtein

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sudhir Kumar

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Zhong Jin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Geraldine L C Paulus

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shangchao Lin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.W. Lan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge