Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chil-Hung Cheng is active.

Publication


Featured researches published by Chil-Hung Cheng.


Materials | 2014

Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

Babak Samiey; Chil-Hung Cheng; Jiangning Wu

Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied.


Materials | 2014

A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption

Mays Alhamami; Huu Doan; Chil-Hung Cheng

Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses.


Chemical Communications | 2011

A facile method to tune zeolite L crystals with low aspect ratio

Adriana Gaona Gomez; Glynis de Silveira; Huu Doan; Chil-Hung Cheng

We demonstrate an alternative route to tune the morphology of zeolite L crystals using C(2)H(5)OH as the co-solvent in the synthesis gel. A low aspect ratio (0.2 to 0.4) of zeolite L crystals was obtained at lower synthesis temperature (150 °C) and shorter synthesis duration (3 days).


Advanced Materials | 2014

One‐Step Two‐Dimensional Microfluidics‐Based Synthesis of Three‐Dimensional Particles

Navid Hakimi; Scott S. H. Tsai; Chil-Hung Cheng; Dae Kun Hwang

Synthesis of three-dimensional anisotropic microparticles using a simple one-step microfluidic-based method is described. The method exploits the nonuniformity of the polymerizing UV light, UV absorption by opaque nanoparticles in the precursor solution, and discontinuous photomask patterns to make magnetic and non-magnetic microparticles in a twodimensional microchannel. Numerical simulations of monomer conversion in the microfluidic channel are performed to predict the manufactured particle shape.


Korean Journal of Chemical Engineering | 2016

Prediction of power consumption and performance in ultrafiltration of simulated latex effluent using non-uniform pore sized membranes

Amira Abdelrasoul; Huu Doan; Chil-Hung Cheng

Tha aim of the present study was to develop a series of numerical models for an accurate prediction of the power consumption in ultrafiltration of simulated latex effluent. The developed power consumption model incorporated fouling attachment, as well as chemical and physical factors in membrane fouling, in order to ensure accurate prediction and scale-up. This model was applied to heterogeneous membranes with non-uniform pore sizes at a given operating conditions and mem- brane surface charges. Polysulfone flat membrane, with a membrane molecular weight cutoff (MWCO) of 60,000 dalton, at different surface charges was used under a constant flow rate and cross-flow mode. In addition, the developed models were examined using various membranes at a variety of surface charges so as to test the overall reliability and accuracy of these models. The power consumption predicted by the models corresponded to the calculated values from the experimental data for various hydrophilic and hydrophobic membranes with an error margin of 6.0% up to 19.1%.


Journal of Environmental Sciences-china | 2017

The influence of aggregation of latex particles on membrane fouling attachments & ultrafiltration performance in ultrafiltration of latex contaminated water and wastewater.

Amira Abdelrasoul; Huu Doan; Chil-Hung Cheng

The goal of the present study was to investigate the influence of latex particle aggregation on membrane fouling attachments and the ultrafiltration performance of simulated latex effluent using Cetyltrimethyl Ammonium Bromide (CTAB) as a cationic surfactant. Hydrophilic polysulfone and ultrafilic flat heterogeneous membranes, with molecular weight cut off (MWCO) of 60,000 and 100,000, respectively, as well as hydrophobic polyvinylidene difluoride with MWCO of 100,000, were used under a constant flow rate and cross-flow mode in ultrafiltration of latex solution. In addition, a polycarbonate flat membrane with uniform pore size of 0.05μm was likewise used during the experiment. The effects of CTAB on the latex particle size distribution were investigated at various concentrations, different treatment times, and diverse agitation duration times. The effects of CTAB on the zeta potential of membrane surfaces and latex particles were also investigated. The data obtained indicate that the particle size distribution of treated latex effluent experienced significant shifts in the peaks toward a larger size range caused by the aggregation of particles. As a result, the mass of fouling contributing to pore blocking and the irreversible fouling were noticeably reduced. The optimum results occurred in the instance when CTAB was added at the critical micelle concentration of 0.36g/L, for the duration of 10min and with minimal agitation. Notably, a higher stirring rate had an overall negative effect on the membrane fouling minimization.


Materials | 2018

Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite

Mohammad Rafi; Babak Samiey; Chil-Hung Cheng

Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine.


Environmental Technology | 2018

The effect of contaminated particle sphericity and size on membrane fouling in cross flow ultrafiltration

Amira Abdelrasoul; Huu Doan; Chil-Hung Cheng

ABSTRACT The goal of the current research was to critically examine the role of the shape and the size of contaminated particles for an accurate prediction of membrane fouling phenomenon. Polycarbonate flat membranes (PC) with uniform pore sizes of 0.05 and 0.1 µm, in addition to Polysulfone membranes (PS) with molecular weight cut off (MWCO) of 60,000 kDa were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of a latex paint solution featuring a wide range of particle size distribution. The current mathematical model was developed to illustrate the effect of irregularity and polydispersity of latex particles on the mass of fouling and irreversible fouling on membranes. The experimental results established that the sphericity of contaminated particles had a critical effect on the membrane fouling and prediction of transmembrane pressure and total mass of fouling using the homogenous pore size membranes. The Cetyltrimethyl Ammonium Bromide (CTAB) was implemented as a cationic surfactant so as to facilitate the aggregation of latex particles. The results obtained indicated that the particle size had a significant influence on fouling potential at different aggregation levels.


Polymer Science Series A | 2018

Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges

Amira Abdelrasoul; Huu Doan; Chil-Hung Cheng

Biomimetic and bioinspired membranes are the efficient membrane technology when it comes to multiple usage scenarios, including next generations of biomaterials within the commercial separation applications, as well as, water and wastewater treatment technologies. In recent years, aquaporin biomimetic membranes for water separation have raised considerable interest. These membranes have displayed distinguished properties and outstanding performances, as diverse interactions, varying selective transport mechanisms, superior stability, maximum resistance to membrane fouling, and distinct adaptability. The biomimetic membranes have made significant contributions when it comes to water stress, environmental threats and energy. It has the potential to produce clean water more efficiently than reverse osmosis membranes (RO), while saving up to 80% of the energy used for desalination processes. More than half of the 15000 desalination plants around the world utilize RO technologies, and the implementation of biomimetic membranes on a large scale could save hundreds of millions of dollars in energy cost annually (potential savings of


Archive | 2015

Mass Transfer Mechanisms and Transport Resistances in Membrane Separation Process

Amira Abdelrasoul; Huu Doan; Chil-Hung Cheng

1.45 million/year for 100 ML/day desalination plant). This paper discusses the interplay of the main components of aquaporin biomimetic membranes: aquaporin proteins, block copolymers for aquaporin proteins reconstitution, and polymer-based supporting structures. We focus specifically on the challenges and review recent developments on the interplay between aquaporin proteins and block copolymers. The recent efforts in embedding reconstituted aquaporin proteins in membrane designs that are based on conventional thin film interfacial polymerization techniques are evaluated. In addition, emerging challenges and opportunities for biomimetic membranes are studied from the perspective of current and future applications.

Collaboration


Dive into the Chil-Hung Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amira Abdelrasoul

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge