Chin-Chang Kuo
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chin-Chang Kuo.
Biophysical Journal | 2014
Akihisa T. Kodama; Chin-Chang Kuo; Thomas Boatwright; Michael Dennin
We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized to determine changes in the phase transition behavior. We find that the deposition of particles close to 20 nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration.
Langmuir | 2012
Chin-Chang Kuo; Akihisa T. Kodama; Thomas Boatwright; Michael Dennin
We report on the impact of differently sized particles on the collapse of a Langmuir monolayer. We use an SDS-DODAB monolayer because it is known to collapse reversibly under compression and expansion cycles. Particles with diameters of 1 μm, 0.5 μm, 0.1 μm, and 20 nm are deposited on the SDS-DODAB monolayer. We find a critical particle size range of 0.1 to 0.5 μm that produces a transition from reversible to irreversible collapse. The nature of the collapse is determined through optical observations and surface pressure measurements. In addition, although 20 nm particles do not cause irreversible collapse in the monolayer, they significantly decrease the collapse pressure relative to the other systems. Therefore, we observe three distinct collapse behaviors-reversible, irreversible, and reversible at a reduced surface pressure.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Justin Burton; Jason M. Amundson; Ryan Cassotto; Chin-Chang Kuo; Michael Dennin
Significance Ice mélange, a granular collection of broken icebergs ranging from tens of meters to hundreds of meters in size, sits in front of many of the Earth’s most active tidewater glaciers. In addition to influencing heat and mass transport in the ocean, the jam-packed mélange provides a geophysical living laboratory to test principles developed for small-scale granular materials such as sand. By characterizing both flow and mechanical stress using field measurements, laboratory experiments, and numerical modeling, we show that ice mélange is a quasi-2D, creeping granular fluid which constantly jams and unjams as it advances through the fjord. Most importantly, our results show how ice mélange can act as a “granular ice shelf” which buttresses even the largest icebergs that calve into the ocean. Tidewater glacier fjords are often filled with a collection of calved icebergs, brash ice, and sea ice. For glaciers with high calving rates, this “mélange” of ice can be jam-packed, so that the flow of ice fragments is mostly determined by granular interactions. In the jammed state, ice mélange has been hypothesized to influence iceberg calving and capsize, dispersion and attenuation of ocean waves, injection of freshwater into fjords, and fjord circulation. However, detailed measurements of ice mélange are lacking due to difficulties in instrumenting remote, ice-choked fjords. Here we characterize the flow and associated stress in ice mélange, using a combination of terrestrial radar data, laboratory experiments, and numerical simulations. We find that, during periods of terminus quiescence, ice mélange experiences laminar flow over timescales of hours to days. The uniform flow fields are bounded by shear margins along fjord walls where force chains between granular icebergs terminate. In addition, the average force per unit width that is transmitted to the glacier terminus, which can exceed 107 N/m, increases exponentially with the mélange length-to-width ratio. These “buttressing” forces are sufficiently high to inhibit the initiation of large-scale calving events, supporting the notion that ice mélange can be viewed as a weak granular ice shelf that transmits stresses from fjord walls back to glacier termini.
Journal of Rheology | 2012
Chin-Chang Kuo; Michael Dennin
The behavior of materials under tension is a rich area of both fluid and solid mechanics. For simple fluids, the breakup of a liquid as it is pulled apart generally exhibits an instability driven, pinch-off type behavior. In contrast, solid materials typically exhibit various forms of fracture under tension. The interaction of these two distinct failure modes is of particular interest for complex fluids, such as foams, pastes, slurries, etc. The rheological properties of complex fluids are well-known to combine features of solid and fluid behaviors, and it is unclear how this translates to their failure under tension. In this paper, we present experimental results for a model complex fluid, a bubble raft. As expected, the system exhibits both pinch-off and fracture when subjected to elongation under constant velocity. We report on the critical velocity vc below which pinch-off occurs and above which fracture occurs as a function of initial system width W, length L, bubble size R, and fluid viscosity for b...
Physical Review E | 2016
Chin-Chang Kuo; Devin Kachan; Alex J. Levine; Michael Dennin
We report on the collapse of bubble rafts under compression in a closed rectangular geometry. A bubble raft is a single layer of bubbles at the air-water interface. A collapse event occurs when bubbles submerge beneath the neighboring bubbles under compression, causing the structure of the bubble raft to go from single-layer to multilayer. We studied the collapse dynamics as a function of compression velocity. At higher compression velocity we observe a more uniform distribution of collapse events, whereas at lower compression velocities the collapse events accumulate at the system boundaries. We propose that this system can be understood in terms of a linear elastic sheet coupled to a local internal (Ising) degree of freedom. The two internal states, which represent one bubble layer versus two, couple to the elasticity of the sheet by locally changing the reference state of the material. By exploring the collapse dynamics of the bubble raft, one may address the basic nonlinear mechanics of a number of complex systems in which elastic stress is coupled to local internal variables.
Journal of Applied Physics | 2015
Chin-Chang Kuo; Yongxue Li; Du Nguyen; Steven F. Buchsbaum; Laura Innes; Aaron P. Esser-Kahn; Lorenzo Valdevit; L. Z. Sun; Zuzanna Siwy; Michael Dennin
We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sec...
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2011
Michael Arciniaga; Chin-Chang Kuo; Michael Dennin
Physical Review E | 2013
Chin-Chang Kuo; Michael Dennin
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2017
Chin-Chang Kuo; Alex J. Levine; Michael Dennin
Physical Review E | 2013
Chin-Chang Kuo; Michael Dennin