Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chin-Chuan Chen is active.

Publication


Featured researches published by Chin-Chuan Chen.


PLOS ONE | 2015

Using Imiquimod-Induced Psoriasis-Like Skin as a Model to Measure the Skin Penetration of Anti-Psoriatic Drugs

Yin-Ku Lin; Sien-Hung Yang; Chin-Chuan Chen; Hsiao-Ching Kao; Jia-You Fang

Objective Psoriasis is a chronic inflammatory skin disease and topical therapy remains a key role for treatment. The aim of this study is to evaluate the influence of psoriasis-like lesions on the cutaneous permeation of anti-psoriatic drugs. Methods We first set up imiquimod-induced dermatitis in mice that closely resembles human psoriasis lesions. The development of the lesions is based on the IL-23/IL17A axis for phenotypical and histological characteristics. Four drugs, 5-aminolevulinic acid (ALA), tacrolimus, calcipotriol, and retinoic acid, were used to evaluate percutaneous absorption. Results The most hydrophilic molecule, ALA, revealed the greatest enhancement on skin absorption after imiquimod treatment. Imiquimod increased the skin deposition and flux of ALA by 5.6 to 14.4-fold, respectively, compared to normal skin. The follicular accumulation of ALA was also increased 3.8-fold. The extremely lipophilic drug retinoic acid showed a 1.7- and 3.8-fold increase in skin deposition and flux, respectively. Tacrolimus flux was enhanced from 2 to 21 μg/cm2/h by imiquimod intervention. However, imiquimod did not promote skin deposition of this macrolide. The lipophilicity, but not the molecular size, dominated drug permeation enhancement by psoriatic lesions. The in vivo percutaneous absorption of ALA and rhodamine B examined by confocal microscopy confirmed the deficient resistance of epidermal barrier for facilitating cutaneous delivery of drugs via psoriasis-like skin. Conclusion We established the topical delivery profiles of anti-psoriatic drugs via imiquimod-treated psoriasis-like skin.


PLOS ONE | 2015

Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity

Shu-Huei Wang; Pei-Ya Lin; Ya-Chen Chiu; Ju-Sui Huang; Yi-Tsen Kuo; Jen-Chine Wu; Chin-Chuan Chen

Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity.


International Journal of Molecular Sciences | 2018

Corylin Suppresses Hepatocellular Carcinoma Progression via the Inhibition of Epithelial-Mesenchymal Transition, Mediated by Long Noncoding RNA GAS5.

Chi-Yuan Chen; Chin-Chuan Chen; Tzong-Ming Shieh; Chuen Hsueh; Shu-Huei Wang; Yann-Lii Leu; Jang-Hau Lian; Tong-Hong Wang

Corylin is a flavonoid extracted from the nuts of Psoralea corylifolia L. (Fabaceae), which is a widely used anti-inflammatory and anticancer herb in China. Recent studies revealed antioxidant, anti-inflammatory, and bone differentiation–promoting effects of corylin. However, there are no studies examining the anticancer activity of corylin. In this study, we used cells and animal models to examine the antitumor effects of corylin on hepatocellular carcinoma (HCC) and then studied its downstream regulatory mechanisms. The results showed that corylin significantly inhibited the proliferation, migration, and invasiveness of HCC cells and suppressed epithelial–mesenchymal transition. We found that the anti-HCC mechanism of corylin’s action lies in the upregulation of tumor suppressor long noncoding RNA growth arrest-specific transcript 5 (GAS5) and the activation of its downstream anticancer pathways. In animal experiments, we also found that corylin can significantly inhibit tumor growth without significant physiological toxicity. The above results suggest that corylin has anti-HCC effects and good potential as a clinical treatment.


PLOS ONE | 2016

Viscolin Inhibits In Vitro Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia In Vivo

Chin-Chuan Chen; Chan-Jung Liang; Yann-Lii Leu; Yuh-Lien Chen; Shu-Huei Wang

Viscolin, an extract of Viscum coloratum, has anti-inflammatory and anti-proliferative properties against harmful stimuli. The aim of the study was to examine the anti-proliferative effects of viscolin on platelet derived growth factor-BB (PDGF)-treated human aortic smooth muscle cells (HASMCs) and identify the underlying mechanism responsible for these effects. Viscolin reduced the PDGF-BB-induced HASMC proliferation and migration in vitro; it also arrested HASMCs in the G0/G1 phase by decreasing the protein expression of Cyclin D1, CDK2, Cyclin E, CDK4, and p21Cip1 as detected by Western blot analysis. These effects may be mediated by reduced PDGF-induced phosphorylation of ERK1/2, JNK, and P38, but not AKT as well as inhibition of PDGF-mediated nuclear factor (NF)-κB p65 and activator protein 1 (AP-1)/c-fos activation. Furthermore, viscolin pre-treatment significantly reduced neointimal hyperplasia of an endothelial-denuded femoral artery in vivo. Taken together, viscolin attenuated PDGF–BB-induced HASMC proliferation in vitro and reduced neointimal hyperplasia in vivo. Thus, viscolin may represent a therapeutic candidate for the prevention and treatment of vascular proliferative diseases.


Cell Death and Disease | 2018

Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair

Chin-Chuan Chen; Chi-Yuan Chen; Shir-Hwa Ueng; Chuen Hsueh; Chau-Ting Yeh; Jar-Yi Ho; Li-Fang Chou; Tong-Hong Wang

Corylin, a biologically active agent extracted from Psoralea corylifolia L. (Fabaceae), promotes bone differentiation and inhibits inflammation. Currently, few reports have addressed the biological functions that are regulated by corylin, and to date, no studies have investigated its antitumor activity. In this study, we used cell functional assays to analyze the antitumor activity of corylin in hepatocellular carcinoma (HCC). Furthermore, whole-transcriptome assays were performed to identify the downstream genes that were regulated by corylin, and gain-of-function and loss-of-function experiments were conducted to examine the regulatory roles of the above genes. We found that corylin significantly inhibited the proliferation, migration, and invasion of HCC cells and increased the toxic effects of chemotherapeutic agents against HCC cells. These properties were due to the induction of a long noncoding RNA, RAD51-AS1, which bound to RAD51 mRNA, thereby inhibiting RAD51 protein expression, thus inhibiting the DNA damage repair ability of HCC cells. Animal experiments also showed that a combination treatment with corylin significantly increased the inhibitory effects of the chemotherapeutic agent etoposide (VP16) on tumor growth. These findings indicate that corylin has strong potential as an adjuvant drug in HCC treatment and that corylin can strengthen the therapeutic efficacy of chemotherapy and radiotherapy.


International Journal of Molecular Sciences | 2017

Dihydrocoumarin, an HDAC Inhibitor, Increases DNA Damage Sensitivity by Inhibiting Rad52

Chin-Chuan Chen; Ju-Sui Huang; Tong-Hong Wang; Chen-Hsin Kuo; Chia-Jen Wang; Shu-Huei Wang; Yann-Lii Leu

Effective DNA repair enables cancer cells to survive DNA damage induced by chemotherapeutic or radiotherapeutic treatments. Therefore, inhibiting DNA repair pathways is a promising therapeutic strategy for increasing the efficacy of such treatments. In this study, we found that dihydrocoumarin (DHC), a flavoring agent, causes deficiencies in double-stand break (DSB) repair and prolonged DNA damage checkpoint recovery in yeast. Following DNA damage, Rad52 recombinase was revealed to be inhibited by DHC, which results in deficiencies in DSB repair and prolonged DNA damage checkpoint recovery. The deletion of RPD3, a class I histone deacetylase (HDAC), was found to mimic DHC-induced suppression of Rad52 expression, suggesting that the HDAC inhibitor activity of DHC is critical to DSB repair and DNA damage sensitivity. Overall, our findings delineate the regulatory mechanisms of DHC in DSB repair and suggest that it might potentially be used as an inhibitor of the DNA repair pathway in human cells.


PLOS ONE | 2018

Application of ribonucleoside vanadyl complex (RVC) for developing a multifunctional tissue preservative solution

Tzong-Ming Shieh; Chi-Yuan Chen; Chuen Hsueh; Cheng-Chia Yu; Chin-Chuan Chen; Tong-Hong Wang

The quality of biological samples greatly affects the accuracy of scientific results. However, RNA in cryopreserved tissues gradually degrades during storage, leading to errors in the results of subsequent experiments. A suitable sample preservative solution can prolong storage and enhance the research value of samples. Here, we developed a sample preservative solution using the properties of the ribonucleoside vanadyl complex (RVC) and compared its effects on RNA and DNA quality, protein activity, and tissue morphology with the commercially available and widely used RNAlater® Stabilization Solution. The results showed that both the RVC-based preservative solution and RNAlater can effectively delay RNA degradation in tissue samples stored at 4°C or −80°C compared with samples stored without any preservative solution. In contrast to RNAlater, the RVC-based preservative solution did not result in damage to the tissue morphology or a loss of protein activity. Additionally, the RVC-based preservative solution did not affect the RNA and genomic DNA contents of the tissue samples or the results of subsequent experimental analyses. An RVC-based reagent can be used as a multifunctional yet relatively inexpensive tissue preservative solution to provide a comprehensive and cost-effective method for preserving samples for tissue banks.


International Journal of Molecular Sciences | 2018

Melatonin Inhibits the Progression of Hepatocellular Carcinoma through MicroRNA Let7i-3p Mediated RAF1 Reduction

Tong-Hong Wang; Chuen Hsueh; Chin-Chuan Chen; Wan-Syuan Li; Chau-Ting Yeh; Jang-Hau Lian; Junn-Liang Chang; Chi-Yuan Chen

Melatonin is the main pineal hormone that relays light/dark-cycle information to the circadian system. Recent studies have examined the intrinsic antitumor activity of melatonin in various cancers, including hepatocellular carcinoma (HCC), the primary life-threatening malignancy in both sexes in Taiwan. However, the detailed regulatory mechanisms underlying melatonin’s anti-HCC activity remain incompletely understood. Here, we investigated the mechanisms by which the anti-HCC activity of melatonin is regulated. Human hepatoma cell lines were treated with 1 and 2 mM melatonin, and functional assays were used to dissect melatonin’s antitumor effect in HCC; small-RNA sequencing was performed to identify the microRNAs (miRNAs) involved in the anti-HCC activity of melatonin; and quantitative RT-PCR and Western blotting were used to elucidate how miRNAs regulate melatonin-mediated HCC suppression. Melatonin treatment at both doses strongly inhibited the proliferation, migration and invasion capacities of Huh7 and HepG2 cell lines, and melatonin treatment markedly induced the expression of the miRNA let7i-3p in cells. Notably, transfection of cells with a let7i-3p mimic drastically reduced RAF1 expression and activation of mitogen-activated protein kinase signaling downstream from RAF1, and rescue-assay results demonstrated that melatonin inhibited HCC progression by modulating let7i-3p-mediated RAF1 suppression. Our findings support the view that melatonin treatment holds considerable promise as a therapy for HCC.


Cancers | 2018

Melatonin Sensitizes Hepatocellular Carcinoma Cells to Chemotherapy Through Long Non-Coding RNA RAD51-AS1-Mediated Suppression of DNA Repair

Chin-Chuan Chen; Chi-Yuan Chen; Shu-Huei Wang; Chau-Ting Yeh; Shih-Chi Su; Shir-Hwa Ueng; Wen-Yu Chuang; Chuen Hsueh; Tong-Hong Wang

DNA repair systems are abnormally active in most hepatocellular carcinoma (HCC) cells due to accumulated mutations, resulting in elevated DNA repair capacity and resistance to chemotherapy and radiotherapy. Thus, targeting DNA repair mechanisms is a common treatment approach in HCC to sensitize cancer cells to DNA damage. In this study, we examined the anti-HCC effects of melatonin and elucidated the regulatory mechanisms. The results of functional assays showed that in addition to inhibiting the proliferation, migration, and invasion abilities of HCC cells, melatonin suppressed their DNA repair capacity, thereby promoting the cytotoxicity of chemotherapy and radiotherapy. Whole-transcriptome and gain- and loss-of-function analyses revealed that melatonin induces expression of the long noncoding RNA RAD51-AS1, which binds to RAD51 mRNA to inhibit its translation, effectively decreasing the DNA repair capacity of HCC cells and increasing their sensitivity to chemotherapy and radiotherapy. Animal models further demonstrated that a combination of melatonin and the chemotherapeutic agent etoposide (VP16) can significantly enhance tumor growth inhibition compared with monotherapy. Our results show that melatonin is a potential adjuvant treatment for chemotherapy and radiotherapy in HCC.


Scientific Reports | 2017

The effects of artocarpin on wound healing: in vitro and in vivo studies

Chung-Ju Yeh; Chin-Chuan Chen; Yann-Lii Leu; Ming-Wei Lin; Mei-Miao Chiu; Shu-Huei Wang

The skin protects the body against harmful substances and microorganisms. When the skin is damaged, wound healing must be finely regulated to restore the normal function of skin tissue. Artocarpin (ARTO), a prenylated flavonoid purified from the plant Artocarpus communis, has been reported to have anti-inflammatory and anti-cancer properties. The aim of the present study was to evaluate the wound healing potential and therapeutic mechanism of ARTO. Immunohistochemical staining of neutrophils and macrophages and mouse cytokine array analysis demonstrated that ARTO accelerates inflammatory progression and subsequently decreases persistent inflammation. ARTO increases collagen production and increases human fibroblast proliferation and migration by activating the P38 and JNK pathways. Moreover, ARTO increases the proliferation and migration of human keratinocytes through the ERK and P38 pathways and augments human endothelial cell proliferation and tube formation through the Akt and P38 pathways. Together, our data suggested that ARTO enhances skin wound healing, possibly by accelerating the inflammatory phase and by increasing myofibroblast differentiation, proliferation and migration of fibroblasts and keratinocytes, collagen synthesis and maturation, re-epithelialization, and angiogenesis. These findings indicate that ARTO has potential as a potent therapeutic agent for the treatment of skin wounds.

Collaboration


Dive into the Chin-Chuan Chen's collaboration.

Top Co-Authors

Avatar

Shu-Huei Wang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Tong-Hong Wang

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Chi-Yuan Chen

Chang Gung University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chau-Ting Yeh

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chan-Jung Liang

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge