Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chin Yi Cheng is active.

Publication


Featured researches published by Chin Yi Cheng.


The American Journal of Chinese Medicine | 2008

Ferulic Acid Reduces Cerebral Infarct Through Its Antioxidative and Anti-Inflammatory Effects Following Transient Focal Cerebral Ischemia in Rats

Chin Yi Cheng; Tin-Yun Ho; E. Jian Lee; Shan Yu Su; Nou Ying Tang; Ching Liang Hsieh

Both Angelica sinensis (Oliv.) Diels (AS) and Ligusticum chuanxiong Hort. (LC) have been used to treat stroke in traditional Chinese medicine for centuries. Ferulic acid (FA), a component in both AS and LC, plays a role in neuroprotection. The purpose of this study was to investigate the effects of FA on cerebral infarct and the involvement of neuroprotective pathway. Rats underwent 2 hours and 24 hours of reperfusion after 90 min middle cerebral artery occlusion (MCAo). The cerebral infarct and neurological deficits were measured after 24 hours of reperfusion. Furthermore, the expression of superoxide radicals, intercellular adhesion molecule-1 (ICAM-1), myeloperoxidase (MPO), nuclear factor-kappaB (NF-kappaB) immunoreactive cells were assessed after 2 hours and 24 hours of reperfusion. Administration of 80 and 100 mg/kg of FA at the beginning of MCAo significantly reduced cerebral infarct and neurological deficit-score, similar results were obtained by 100 mg/kg of FA administered 30 min after MCAo. FA treatment (100 mg/kg i.v.) effectively suppressed superoxide radicals in the parenchyma lesion, and ICAM-1 immunoreactive vessels in the ischemic striatum after 2 hours of reperfusion. FA (100 mg/kg i.v.) reduced the expression of ICAM-1 and NF-kappaB in the ischemic cortex and striatum, also down-regulated MPO immunoreactive cells in the ischemic cortex after 24 hours of reperfusion. These results showed that the effect of FA on reducing cerebral infarct area and neurological deficit-score were at least partially attributed to the inhibition of superoxide radicals, ICAM-1 and NF-kappaB expression in transient MCAo rats.


Acta Pharmacologica Sinica | 2010

Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABA B1 receptor expression in transient focal cerebral ischemia in rats

Chin Yi Cheng; Shan Yu Su; Nou Ying Tang; Tin-Yun Ho; Wan Yu Lo; Ching Liang Hsieh

AbstractAim:Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) provides neuroprotection against apoptosis in a transient middle cerebral artery occlusion (MCAo) model. This study was to further investigate the anti-apoptotic effect of FA during reperfusion after cerebral ischemia.Methods:Rats were subjected to 90 min of cerebral ischemia followed by 3 or 24 h of reperfusion after which they were sacrificed.Results:Intravenous FA (100 mg/kg) administered immediately after middle cerebral artery occlusion (MCAo) or 2 h after reperfusion effectively abrogated the elevation of postsynaptic density-95 (PSD-95), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), nitrotyrosine, and cleaved caspase-3 levels as well as apoptosis in the ischemic cortex at 24 h of reperfusion. FA further inhibited Bax translocation, cytochrome c release, and p38 mitogen-activated protein (MAP) kinase phosphorylation. Moreover, FA enhanced the expression of gamma-aminobutyric acid type B receptor subunit 1 (GABAB1) in the ischemic cortex at 3 and 24 h of reperfusion. In addition, nitrotyrosine-positive cells colocalized with cleaved caspase-3-positive cells, and phospho-p38 MAP kinase-positive cells colocalized with nitrotyrosine- and Bax-positive cells, indicating a positive relationship among the expression of nitrotyrosine, phospho-p38 MAP kinase, Bax, and cleaved caspase-3. The mutually exclusive expression of GABAB1 and nitrotyrosine revealed that there is a negative correlation between GABAB1 and nitrotyrosine expression profiles. Additionally, pretreatment with saclofen, a GABAB receptor antagonist, abolished the neuroprotection of FA against nitric oxide (NO)-induced apoptosis.Conclusion:FA significantly enhances GABAB1 receptor expression at early reperfusion and thereby provides neuroprotection against p38 MAP kinase-mediated NO-induced apoptosis at 24 h of reperfusion.


The American Journal of Chinese Medicine | 2010

Uncaria rhynchophylla (Miq) Jack Plays a Role in Neuronal Protection in Kainic Acid-Treated Rats

Nou Ying Tang; Chung-Hsiang Liu; Shan Yu Su; Ya Min Jan; Ching Tou Hsieh; Chin Yi Cheng; Woei Cherng Shyu; Ching Liang Hsieh

Uncaria rhynchophylla (Miq) Jack (UR) is one of many Chinese herbs. Our previous studies have shown that UR has both anticonvulsive and free radical-scavenging activities in kainic acid (KA)-treated rats. The aim of the present study was to use the effect of UR on activated microglia, nitric oxide synthase, and apoptotic cells to investigate its function in neuroproction in KA-treated rats. UR of 1.0 or 0.5 g/kg was orally administered for 3 days (first day, second day, and 30 min prior to KA administration on the third day), or 10 mg/kg (intraperitoneal injection, i.p.) N-nitro-L-arginine methyl ester (L-NAME) 30 min prior to KA (2 microg/2 microl) was injected into the right hippocampus region of Sprague-Dawly rats. ED1 (mouse anti rat CD68), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) immunoreactive cells and apoptotic cells were observed in the hippocampus region. The results indicated that 1.0 g/kg, 0.5 g/kg of UR and 10 mg/kg of L-NAME reduced the counts of ED1, nNOS, iNOS immunoreactive cells and apoptotic cells in KA-treated rats. This study demonstrates that UR can reduce microglia activation, nNOS, iNOS and apoptosis, suggesting that UR plays a neuro-protective role against neuronal damage in KA-treated rats.


PLOS ONE | 2014

Electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints protects rats against subacute-phase cerebral ischemia-reperfusion injuries by reducing S100B-mediated neurotoxicity

Chin Yi Cheng; Jaung Geng Lin; Nou Ying Tang; Shung Te Kao; Ching Liang Hsieh

Objectives The purpose of this study was to evaluate the effects of electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints (EA at acupoints) during the subacute phase of cerebral ischemia-reperfusion (I/R) injury and to establish the neuroprotective mechanisms involved in the modulation of the S100B-mediated signaling pathway. Methods The experimental rats were subjected to middle cerebral artery occlusion (MCAo) for 15 min followed by 1 d or 7 d of reperfusion. EA at acupoints was applied 1 d postreperfusion then once daily for 6 consecutive days. Results We observed that 15 min of MCAo caused delayed infarct expansion 7 d after reperfusion. EA at acupoints significantly reduced the cerebral infarct and neurological deficit scores. EA at acupoints also downregulated the expression of the glial fibrillary acidic protein (GFAP), S100B, nuclear factor-κB (NF-κB; p50), and tumor necrosis factor-α (TNF-α), and reduced the level of inducible nitric oxide synthase (iNOS) and apoptosis in the ischemic cortical penumbra 7 d after reperfusion. Western blot analysis showed that EA at acupoints significantly downregulated the cytosolic expression of phospho-p38 MAP kinase (p-p38 MAP kinase), tumor necrosis factor receptor type 1-associated death domain (TRADD), Fas-associated death domain (FADD), cleaved caspase-8, and cleaved caspase-3 in the ischemic cortical penumbra 7 d after reperfusion. EA at acupoints significantly reduced the numbers of GFAP/S100B and S100B/nitrotyrosine double-labeled cells. Conclusion Our study results indicate that EA at acupoints initiated 1 d postreperfusion effectively downregulates astrocytic S100B expression to provide neuroprotection against delayed infarct expansion by modulating p38 MAP kinase-mediated NF-κB expression. These effects subsequently reduce oxidative/nitrative stress and inhibit the TNF-α/TRADD/FADD/cleaved caspase-8/cleaved caspase-3 apoptotic pathway in the ischemic cortical penumbra 7 d after reperfusion.


The American Journal of Chinese Medicine | 2005

Microglia, Apoptosis and Interleukin-1β Expression in the Effect of Sophora Japonica L. on Cerebral Infarct Induced by Ischemia-Reperfusion in Rats

Chih Jui Lao; Jaung Geng Lin; Jon Son Kuo; Pei-Dawn Lee Chao; Chin Yi Cheng; Nou Ying Tang; Ching Liang Hsieh

Sophora Japonica L. (SJ) is a traditional Chinese herb used to cool blood, stop bleeding and to treat hemorrhoids with bleeding. Although several recent studies found that both SJ and Ginkgo biloba have the same components of quercetin and rutin, only Ginkgo biloba has been widely used to treat cerebrovascular disorders and dementia in humans. This study investigated the effect of SJ on cerebral infarct in rats. A total of 66 Sprague-Dawley (SD) rats were studied. Focal cerebral infarct was established by occluding the bilateral common carotid arteries and the right middle cerebral artery for 90 minutes. After 24 hours of reperfusion, the neurological status was evaluated. The rats were then killed, and brain tissue was stained with 2,3,5-triphenyl-tetrazolium chloride. The grading scale of neurological deficit and the ratio of cerebral infarction area were used as an index to evaluate the effect of SJ on cerebral infarct. In addition, the number of ED1 and interleukin-1beta immunostaining positive cells, and apoptotic cells were measured in the cerebral infarction zone. The results indicated that pre-treatment with 100 or 200 mg/kg SJ and post-treatment with 200 mg/kg SJ significantly reduced the grade of neurological deficit and the ratio of cerebral infarction area. In addition, pre-treatment with 200 mg/kg SJ also significantly reduced ED1 and interleukin-1beta immunostaining positive cells, and apoptotic cells in ischemia-reperfusion cerebral infarct rats. This study demonstrated that SJ could reduce the cerebral infarction area and neurological deficit induced by ischemia-reperfusion in rats, suggesting its potential as a treatment for cerebral infarct in humans. This effect of SJ involves its suppressive action of microglia, interleukin-1beta and apoptosis.


PLOS ONE | 2016

Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats

Chin Yi Cheng; Nou Ying Tang; Shung Te Kao; Ching Liang Hsieh

Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion.


The American Journal of Chinese Medicine | 2010

Paeonol Attenuates H2O2-Induced NF-κB-Associated Amyloid Precursor Protein Expression

Shan Yu Su; Chin Yi Cheng; Tung-Hu Tsai; Chien-Yun Hsiang; Tin-Yun Ho; Ching Liang Hsieh

Hydrogen peroxide (H₂O₂) has been shown to promote neurodegeneration by inducing the activation of nuclear factor-κB (NF-κB). In this study, NF-κB activation was induced by H₂O₂ in human neuroblastoma SH-SY5Y cells. Whether paeonol, one of the phenolic phytochemicals isolated from the Chinese herb Paeonia suffruticosa Andrews (MC), would attenuate the H₂O₂-induced NF-κB activity was investigated. Western blot results showed that paeonol inhibited the phosphorylation of IκB and the translocation of NF-κB into the nucleus. The ability of paeonol to reduce DNA binding ability and suppress the H₂O₂-induced NF-κB activation was confirmed by an electrophoretic mobility shift assay and a luciferase reporter assay. Using a microarray combined with gene set analysis, we found that the suppression of NF-κB was associated with mature T cell up-regulated genes, the c-jun N-terminal kinase pathway, and two hypoxia-related gene sets, including the hypoxia up-regulated gene set and hypoxia inducible factor 1 targets. Moreover, using network analysis to investigate genes that were altered by H₂O₂ and reversely regulated by paeonol, we found that NF-κB was the primary center of the network and amyloid precursor protein (APP) was the secondary center. Western blotting showed that paeonol inhibited APP at the protein level. In conclusion, our work suggests that paeonol down-regulates H₂O₂-induced NF-κB activity, as well as NF-κB-associated APP expression. Furthermore, the gene expression profile accompanying the suppression of NF-κB by paeonol was identified. The new gene set that can be targeted by paeonol provided a potential use for this drug and a possible pharmacological mechanism for other phenolic compounds that protect against oxidative-related injury.


Evidence-based Complementary and Alternative Medicine | 2012

Paeonol Protects Memory after Ischemic Stroke via Inhibiting β-Secretase and Apoptosis

Shan Yu Su; Chin Yi Cheng; Tung-Hu Tsai; Ching Liang Hsieh

Poststroke dementia commonly occurs following stroke, with its pathogenesis related to β-amyloid production and apoptosis. The present study evaluate the effects of paeonol, one of the phenolic phytochemicals isolated from the Chinese herb Paeonia suffruticosa Andrews (MC), on protection from memory loss after ischemic stroke in the subacute stage. Rats were subjected to transient middle cerebral artery occlusion (tMCAo) with 10 min of ischemia. The data revealed that paeonol recovered the step-through latency in the retrieval test seven days after tMCAo, but did not improve the neurological deficit induced by tMCAo. Levels of Amyloid precursor protein (APP)- and beta-site APP cleaving enzyme (BACE; β-secretase)-immunoreactive cells, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells decreased in the paeonol-administered group. Western blotting revealed decreased levels of Bax protein in mitochondria and apoptosis-inducing factor (AIF) in cytosol following paeonol treatment. In conclusion, we speculate that paeonol protected memory after ischemic stroke via reducing APP, BACE, and apoptosis. Supression the level of Bax and blocking the release of AIF into cytosol might participate in the anti-apoptosis provided by paeonol.


Scientific Reports | 2016

Electric stimulation of the ears ameliorated learning and memory impairment in rats with cerebral ischemia-reperfusion injury

Ching Tung Kuo; Yi Wen Lin; Nou Ying Tang; Chin Yi Cheng; Ching Liang Hsieh

Ear acupuncture enhances the secretion of acetylcholine, which has anti-inflammatory effects. Here we want to investigate the effect of electric stimulation (ES) of the ears on learning and memory impairment in rats with cerebral ischemia-reperfusion injury. At 24 h after reperfusion, 2-Hz ES was applied to the ears for 20 min/day (10 min for each ear) for 7 days continuously. The step-through time of the passive avoidance test was greater in the ES group than in the control group (300.0 ± 0.0 s vs 45.0 ± 26.7 s, p < 0.05). Our results showed that neither neurological deficit score nor motor functions were improved after 2-Hz ES (4.0 ± 0 vs 4.5 ± 0.8, p > 0.05). The numbers of nicotinic acetylcholine receptor α4 positively stained cells in the CA2 and dentate gyrus of the hippocampus were 19.0 ± 11.5 and 269.2 ± 79.3, respectively, in the ES group, which were greater than those in the control group (7.0 ± 5.9 and 165.5 ± 30.8, respectively) (both p < 0.05). These results suggested that 2-Hz ES of the ears ameliorated learning and memory impairment in rats with ischemia-reperfusion injury. ES of the ears has neuroprotective effects, which are related to acetylcholine release.


Evidence-based Complementary and Alternative Medicine | 2015

The History, Mechanism, and Clinical Application of Auricular Therapy in Traditional Chinese Medicine.

Pu Wei Hou; Hsin Cheng Hsu; Yi Wen Lin; Nou Ying Tang; Chin Yi Cheng; Ching Liang Hsieh

Auricular therapy includes acupuncture, electroacupuncture, acupressure, lasering, cauterization, moxibustion, and bloodletting in the auricle. For 2500 years, people have employed auricular therapy for treating diseases, but the methods have been limited to bloodletting and cauterization. Only after 1957, the international scientific community became aware that the map of the ear resembles an inverted fetus, its introduction has led to auricular acupuncture (AA) becoming a more systemic approach, and, following the identification and standardization of more precise points, AA has been employed in clinical applications. The mechanisms of AA are considered to have a close relationship with the autonomic nervous system, the neuroendocrine system, neuroimmunological factors, neuroinflammation, and neural reflex, as well as antioxidation. Auricular therapy has been applied, for example, for pain relief, for the treatment of epilepsy, anxiety, and obesity, and for improving sleep quality. However, the mechanisms and evidence for auricular therapy warrant further study.

Collaboration


Dive into the Chin Yi Cheng's collaboration.

Top Co-Authors

Avatar

Tung-Hu Tsai

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Jian Lee

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge