Chinedu Ekuma
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chinedu Ekuma.
Japanese Journal of Applied Physics | 2011
Chinedu Ekuma; Diola Bagayoko
Ab-initio, self-consistent electronic energy bands of rutile TiO2 are reported within the local density functional approximation (LDA). Our first principle, non-relativistic and ground state calculations employed a local density functional approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). Within the framework of the Bagayoko–Zhao–Williams (BZW) method, we solved self-consistently both the Kohn–Sham equation and the equation giving the ground state charge density in terms of the wave functions of the occupied states. Our calculated band structure shows that there is significant O 2p–Ti 3d hybridization in the valence bands. These bands are well separated from the conduction bands by an indirect band gap of 2.95 eV, from Γ to R. Consequently, this work predicts that rutile TiO2 is an indirect band gap material, as all other gaps from our calculations are larger than 2.95 eV. We found a slightly larger, direct band gap of 3.05 eV, at the Γ point, in excellent agreement with experiment. Our calculations reproduced the peaks in the measured conduction and valence bands densities of states, within experimental uncertainties. We also calculated electron effective mass. Our structural optimization led to lattice parameters of 4.65 and 2.97 A for a0 and c0, respectively with a u parameter of 0.3051 and a bulk modulus of 215 GPa.
European Physical Journal B | 2014
Chinedu Ekuma; V. I. Anisimov; Juana Moreno; Mark Jarrell
We report the electronic structure of monoclinic CuO as obtained from first principles calculations utilizing density functional theory plus effective Coulomb interaction (DFT + U) method. In contrast to standard DFT calculations taking into account electronic correlations in DFT + U gave antiferromagnetic insulator with energy gap and magnetic moment values in good agreement with experimental data. The electronic states around the Fermi level are formed by partially filled Cu 3dx²−y² orbitals with significant admixture of O 2p states. Theoretical spectra are calculated using DFT + U electronic structure method and their comparison with experimental photoemission and optical spectra show very good agreement.
AIP Advances | 2012
Chinedu Ekuma; Mark Jarrell; Juana Moreno; Diola Bagayoko
We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA) potential and the linear combination of atomic orbitals (LCAO) formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW) method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 A, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 A, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.
Physics Letters A | 2013
Chinedu Ekuma; Mark Jarrell; Juana Moreno; Diola Bagayoko
Abstract We report results from an efficient, ab initio method for self-consistent calculations of electronic and structural properties of Ge. Our non-relativistic calculations employed a GGA potential and LCAO formalism. The distinctive feature of our computations stem from the use of Bagayoko–Zhao–Williams–Ekuma–Franklin method. Our results are in agreement with experimental ones where the latter are available. In particular, our theoretical, indirect band gap ( E g Γ – L ) of 0.65 eV, at the experimental lattice constant of 5.66 A, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 5.63 A, with corresponding E g Γ – L of 0.65 eV and a bulk modulus of 80 GPa.
Physical Review Letters | 2017
Chinedu Ekuma; V. Dobrosavljevic; Daniel Gunlycke
We present a first-principles-based many-body typical medium dynamical cluster approximation and density function theory method for characterizing electron localization in disordered structures. This method applied to monolayer hexagonal boron nitride shows that the presence of boron vacancies could turn this wide-gap insulator into a correlated metal. Depending on the strength of the electron interactions, these calculations suggest that conduction could be obtained at a boron vacancy concentration as low as 1.0%. We also explore the distribution of the local density of states, a fingerprint of spatial variations, which allows localized and delocalized states to be distinguished. The presented method enables the study of disorder-driven insulator-metal transitions not only in h-BN but also in other physical materials.
Physical Review B | 2014
Chinedu Ekuma; Hanna Terletska; Ka-Ming Tam; Zi Yang Meng; Juana Moreno; Mark Jarrell
We develop a systematic typical medium dynamical cluster approximation that provides a proper description of the Anderson localization transition in three dimensions (3D). Our method successfully captures the localization phenomenon both in the low and large disorder regimes, and allows us to study the localization in different momenta cells, which renders the discovery that the Anderson localization transition occurs in a cell-selective fashion. As a function of cluster size, our method systematically recovers the re-entrance behavior of the mobility edge and obtains the correct critical disorder strength for Anderson localization in 3D.
Journal of Physics: Condensed Matter | 2014
Chinedu Ekuma; Hanna Terletska; Zi Yang Meng; Juana Moreno; Mark Jarrell; Samiyeh Mahmoudian; V. Dobrosavljevic
We develop a cluster typical medium theory to study localization in disordered electronic systems. Our formalism is able to incorporate non-local correlations beyond the local typical medium theory in a systematic way. The cluster typical medium theory utilizes the momentum-resolved typical density of states and hybridization function to characterize the localization transition. We apply the formalism to the Anderson model of localization in one- and two-dimensions. In one-dimension, we find that the critical disorder strength scales inversely with the linear cluster size with a power law, Wc ∼ (1/Lc)(1/ν), whereas in two-dimensions, the critical disorder strength decreases logarithmically with the linear cluster size. Our results are consistent with previous numerical work and are in agreement with the one-parameter scaling theory.
Journal of Physics: Condensed Matter | 2013
Chinedu Ekuma; Chia-Hui Lin; Juana Moreno; Wei Ku; Mark Jarrell
We report a first-principles Wannier function study of the electronic structure of PdTe. Its electronic structure is found to be a broad three-dimensional Fermi surface with highly reduced correlation effects. In addition, the higher filling of the Pd d-shell, its stronger covalency resulting from the closer energy of the Pd d and Te p shells, and the larger crystal field effects of the Pd ion due to its near octahedral coordination, all serve to weaken significantly electronic correlations in the particle-hole (spin, charge, and orbital) channel. In comparison to the Fe chalcogenides, e.g. FeSe, we highlight the essential features (quasi-two-dimensionality, proximity to half-filling, weaker covalency, and higher orbital degeneracy) of Fe-based high-temperature superconductors.
AIP Advances | 2012
Chinedu Ekuma; Diola Bagayoko; Mark Jarrell; Juana Moreno
We utilized a simple, robust, first principle method, based on basis set optimization with the BZW-EF method, to study the electronic and related properties of transition metal mono-nitrides: ScN and YN. We solved the KS system of equations self-consistently within the linear combination of atomic orbitals (LCAO) formalism. It is shown that the band gap and low energy conduction bands, as well as elastic and structural properties, can be calculated with a reasonable accuracy when the LCAO formalism is used to obtain an optimal basis. Our calculated, indirect electronic band gap (EΓ−Xg) is 0.79 (LDA) and 0.88 eV (GGA) for ScN. In the case of YN, we predict an indirect band gap (EΓ−Xg) of 1.09 (LDA) and 1.15 eV (GGA). We also calculated the equilibrium lattice constants, the bulk moduli (Bo), effective masses, and elastic constants for both systems. Our calculated values are in excellent agreement with experimental ones where the latter are available.
Physical Review B | 2015
Chinedu Ekuma; Conrad Moore; Hanna Terletska; Ka-Ming Tam; Juana Moreno; Mark Jarrell; N. S. Vidhyadhiraja
We use the recently developed typical medium dynamical cluster (TMDCA) approach~[Ekuma \etal,~\textit{Phys. Rev. B \textbf{89}, 081107 (2014)}] to perform a detailed study of the Anderson localization transition in three dimensions for the Box, Gaussian, Lorentzian, and Binary disorder distributions, and benchmark them with exact numerical results. Utilizing the nonlocal hybridization function and the momentum resolved typical spectra to characterize the localization transition in three dimensions, we demonstrate the importance of both spatial correlations and a typical environment for the proper characterization of the localization transition in all the disorder distributions studied. As a function of increasing cluster size, the TMDCA systematically recovers the re-entrance behavior of the mobility edge for disorder distributions with finite variance, obtaining the correct critical disorder strengths, and shows that the order parameter critical exponent for the Anderson localization transition is universal. The TMDCA is computationally efficient, requiring only a small cluster to obtain qualitative and quantitative data in good agreement with numerical exact results at a fraction of the computational cost. Our results demonstrate that the TMDCA provides a consistent and systematic description of the Anderson localization transition.