Ching-Tai Ng
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ching-Tai Ng.
Smart Materials and Structures | 2009
Ching-Tai Ng; M. Veidt
This paper presents the application of Lamb waves to inspect damage in composite laminates. The proposed methodology employs a network of transducers that are used to sequentially scan the structure before and after the presence of damage by transmitting and receiving Lamb wave pulses. A damage localization image is reconstructed by analyzing the cross-correlation of the scatter signal envelope with the excitation pulse envelope for each transducer pair. A potential damage area is then reconstructed by superimposing the image observed from each actuator and sensor signal path. Both numerical and experimental case studies are used to verify the proposed methodology for composite laminates. Three-dimensional finite element models with a transducer network consisting of four transducer elements are used in the numerical case studies. The experimental case studies employ a transducer network using four piezoelectric transducers as transmitter elements and a laser vibrometer to measure the response signals at four locations close to the transducers. The results show that the method enables the reliable detection of structural damage with locating inaccuracies of the order of a few millimeters inside as well as outside of an inspection area of 100 x 100 mm(2).
Journal of the Acoustical Society of America | 2011
Ching-Tai Ng; M. Veidt
An analysis of the scattering characteristics of the fundamental anti-symmetric (A(0)) Lamb wave at a delamination in a quasi-isotropic composite laminate is presented. Analytical solutions for this problem do not exist due to the anisotropic nature and multilayer characteristics of composite laminates. This study uses a three-dimensional finite element (FE) method and experimental measurements to provide physical insight into the scattering phenomena. Good agreement is found between simulations and experimental measurements. The results show that the A(0) Lamb wave scattering at a delamination in composite laminates is much more complicated than the scattering at a defect in isotropic plates. Scatter amplitudes and scatter directivity distributions depend on the delamination size to wavelength ratio and the through-thickness location of the delamination damage. The study also investigates the feasibility of the common experimental practice of simulating delamination damage by bonding masses to the surface of composite laminates for guided wave damage detection and characterization methodologies verifications. The results suggest that care is required to use bonded masses to simulate delamination damage for verifying and optimizing damage characterization techniques. In summary, the results of the investigation help to further advance the use of the A(0) Lamb wave for damage detection and characterization.
Structural Health Monitoring-an International Journal | 2014
Ching-Tai Ng
A Bayesian approach is proposed to quantitatively identify damages in beam-like structures using experimentally measured guided wave signals. The proposed methodology treats the damage location, length and depth as unknown parameters. Damage identification is achieved by solving an optimization problem, in which a hybrid particle swarm optimization algorithm is applied to maximize the probability density function of a damage scenario conditional on the measured guided wave signals. Signal envelopes extracted by the Hilbert transform are proposed to minimize the complexity of the optimization problem in order to enhance the robustness and computational efficiency of the damage identification. One of the advantages of the proposed methodology is that instead of only pinpointing the multivariate damage characteristics, the uncertainty associated with the damage identification results is also quantified. This outcome provides essential information for making decisions about the remedial work necessary to repair structural damage. The experimental data consist of guided wave signals measured at a single location of the beams. A number of experimental case studies considering damages of different scenarios are used to demonstrate the success of the proposed Bayesian approach in identifying the damages. The results show that the proposed approach is able to accurately identify damages, even when the extent of the damage is small.
Journal of the Acoustical Society of America | 2011
M. Veidt; Ching-Tai Ng
This paper investigates the scattering characteristics of the fundamental anti-symmetric (A(0)) Lamb wave at through holes in composite laminates. Three-dimensional (3D) finite element (FE) simulations and experimental measurements are used to study the physical phenomenon. Unidirectional, bidirectional, and quasi-isotropic composite laminates are considered in the study. The influence of different hole diameter to wavelength aspect ratios and different stacking sequences on wave scattering characteristics are investigated. The results show that amplitudes and directivity distribution of the scattered Lamb wave depend on these parameters. In the case of quasi-isotropic composite laminates, the scattering directivity patterns are dominated by the fiber orientation of the outer layers and are quite different for composite laminates with the same number of laminae but different stacking sequence. The study provides improved physical insight into the scattering phenomena at through holes in composite laminates, which is essential to develop, validate, and optimize guided wave damage detection and characterization techniques.
Journal of the Acoustical Society of America | 2012
Ching-Tai Ng; M. Veidt
This article investigates the scattering characteristics of Lamb waves from a debonding at a structural feature in a composite laminate. This study specifically focuses on the use of the low frequency fundamental antisymmetric (A(0)) Lamb wave as the incident wave for debonding detection. Three-dimensional finite element (FE) simulations and experimental measurements are used to investigate the scattering phenomena. Good agreement is obtained between the FE simulations and experimental results. Detailed parameter studies are carried out to further investigate the relationship between the scattering amplitudes and debonding sizes. The results show that the amplitude of the scattered A(0) Lamb wave is sensitive to the debonding size, which indicates the potential of using the low frequency A(0) Lamb wave as the interrogating wave for debonding detection and monitoring. The findings of the study provide improved physical insights into the scattering phenomena, which are important to further advance damage detection techniques and optimize transducer networks.
Advanced Materials Research | 2008
M. Veidt; Ching-Tai Ng; Samuel C. Hames; Thomas Wattinger
This paper presents the application of Lamb waves to detect and locate laminar damages using a beam forming imaging methodology. Beam forming is using a network of transducers that are used to sequentially scan the structure before and after the presence of damage by transmitting and receiving guided wave pulses. An image of the damage is reconstructed by analysing the cross correlation of the scatter signal with the excitation pulse and enables the detection and location of potential damage areas. The results of simulation and experimental studies show that the method enables the reliable detection of structural damages with locating inaccuracies in the order of a few millimeters within inspection areas of 300 x 300 mm2 using a transducer network of only four transducer elements.
International Journal of Structural Stability and Dynamics | 2015
Ching-Tai Ng
The study investigates the accuracy of analytical solutions to the fundamental anti-symmetric Lamb wave scattering at delamination in multilayered isotropic plates. The analytical models are based on the wave function expansion method and Born approximation within the framework of Mindlin plate theory. The study validates the accuracy of modeling the delamination as an inhomogeneity with reduced bending rigidity in predicting Lamb wave scattering induced by geometry change at the delaminated region. A good agreement is observed between the analytical solutions and results of experimentally verified 3D explicit finite element (FE) simulations. The findings support the inhomogeneity assumption in Lamb wave scattering problems and show the feasibility of employing it in delamination characterization.
Second International Conference on Smart Materials and Nanotechnology in Engineering | 2009
Ching-Tai Ng; M. Veidt; Nik Rajic
This paper presents a two-phase imaging methodology to characterise damage in composite laminates utilising Lamb waves generated by integrated piezoceramic transducers. The proposed methodology uses the transducers to sequentially scan the composite laminates before and after the presence of damage by transmitting and receiving Lamb wave pulses. In phase one the damage localisation image is reconstructed by analysing the cross-correlation of the wavelet extracted information from scatter signals with the excitation pulse for each transducer pair. A potential damage area is then reconstructed by superimposing the image observed from each actuator and sensor signal path. In phase two Lamb wave diffraction tomography is used to reconstruct an image quantifying size and shape of the damage based on the same set of measurement data and identified damage location in phase one. The two-phase imaging approach together with the modified diffraction tomography reconstruction algorithm enables a significant reduction of the required number of transducers without the need to know the damage location in advance. Numerical and experimental results are presented to demonstrate the efficiency, accuracy and sensitivity of the proposed methodology.
Structural Health Monitoring-an International Journal | 2017
Reza Soleimanpour; Ching-Tai Ng; Chun H. Wang
Detection and characterization of delamination damage are of great importance to the assurance of structural safety. This work investigates the potential of a baseline-free structural health monitoring technique based on higher harmonics resulting from the nonlinear interaction of guided wave and a delamination. The nonlinearity considered in this study arises from the clapping of the sub-laminates in the delaminated region, which generates contact acoustic nonlinearity. Both explicit finite element simulations and experimental tests are conducted on composite laminates containing a delamination of different sizes and at different through-thickness locations. The results show that the interaction between the fundamental asymmetric mode (A0) of guided wave and a delamination generates contact acoustic nonlinearity in the form of higher harmonics, which provides a good measure for identifying the existence of delaminations and determining their sizes in laminated composite beams. This new insight into the generation mechanisms of nonlinear higher order harmonics in composite laminates will enhance the detection and monitoring of damage in composite structures.
Smart Materials and Structures | 2016
P. Aryan; Andrei Kotousov; Ching-Tai Ng; Stuart James Wildy
Compensation of changing environmental and operational conditions (EOC) is often necessary when using guided-wave based techniques for structural health monitoring in real-world applications. Many studies have demonstrated that the effect of changing EOC can mask damage to a degree that a critical defect might not be detected. Several effective strategies, specifically for compensating the temperature variations, have been developed in recent years. However, many other factors, such as changing humidity and boundary conditions or degradation of material properties, have not received much attention. This paper describes a practical method for reconstruction of the baseline time-trace corresponding to the current EOC. Thus, there is no need for differentiation or compensation procedures when using this method for damage diagnosis. It is based on 3D surface measurements of the velocity field near the actuator using laser vibrometry, in conjunction with high-fidelity finite element simulations of guided wave propagation in free from defects structure. To demonstrate the feasibility and efficiency of the proposed method we provide several examples of the reconstruction and damage detection.