Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ching-Ti Liu is active.

Publication


Featured researches published by Ching-Ti Liu.


PLOS Genetics | 2013

Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci

Ching-Ti Liu; Keri L. Monda; Kira C. Taylor; Leslie A. Lange; Ellen W. Demerath; Walter Palmas; Mary K. Wojczynski; Jaclyn C. Ellis; Mara Z. Vitolins; Simin Liu; George J. Papanicolaou; Marguerite R. Irvin; Luting Xue; Paula J. Griffin; Michael A. Nalls; Adebowale Adeyemo; Jiankang Liu; Guo Li; Edward A. Ruiz-Narváez; Wei-Min Chen; Fang Chen; Brian E. Henderson; Robert C. Millikan; Christine B. Ambrosone; Sara S. Strom; Xiuqing Guo; Jeanette S. Andrews; Yan V. Sun; Thomas H. Mosley; Lisa R. Yanek

Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.


Genetic Epidemiology | 2011

Meta-analysis of Gene-Environment interaction: joint estimation of SNP and SNP×Environment regression coefficients

Alisa K. Manning; Michael P. LaValley; Ching-Ti Liu; Kenneth Rice; Ping An; Yongmei Liu; Iva Miljkovic; Laura J. Rasmussen-Torvik; Tamara B. Harris; Michael A. Province; Ingrid B. Borecki; Jose C. Florez; James B. Meigs; L. Adrienne Cupples; Josée Dupuis

Introduction: Genetic discoveries are validated through the meta‐analysis of genome‐wide association scans in large international consortia. Because environmental variables may interact with genetic factors, investigation of differing genetic effects for distinct levels of an environmental exposure in these large consortia may yield additional susceptibility loci undetected by main effects analysis. We describe a method of joint meta‐analysis (JMA) of SNP and SNP by Environment (SNP × E) regression coefficients for use in gene‐environment interaction studies. Methods: In testing SNP × E interactions, one approach uses a two degree of freedom test to identify genetic variants that influence the trait of interest. This approach detects both main and interaction effects between the trait and the SNP. We propose a method to jointly meta‐analyze the SNP and SNP × E coefficients using multivariate generalized least squares. This approach provides confidence intervals of the two estimates, a joint significance test for SNP and SNP × E terms, and a test of homogeneity across samples. Results: We present a simulation study comparing this method to four other methods of meta‐analysis and demonstrate that the JMA performs better than the others when both main and interaction effects are present. Additionally, we implemented our methods in a meta‐analysis of the association between SNPs from the type 2 diabetes‐associated gene PPARG and log‐transformed fasting insulin levels and interaction by body mass index in a combined sample of 19,466 individuals from five cohorts. Genet. Epidemiol. 35:11–18, 2011.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A forest-based approach to identifying gene and gene–gene interactions

Xiang Chen; Ching-Ti Liu; Meizhuo Zhang; Heping Zhang

Multiple genes, gene-by-gene interactions, and gene-by-environment interactions are believed to underlie most complex diseases. However, such interactions are difficult to identify. Although there have been recent successes in identifying genetic variants for complex diseases, it still remains difficult to identify gene–gene and gene–environment interactions. To overcome this difficulty, we propose a forest-based approach and a concept of variable importance. The proposed approach is demonstrated by simulation study for its validity and illustrated by a real data analysis for its use. Analyses of both real data and simulated data based on published genetic models show the effectiveness of our approach. For example, our analysis of a published data set on age-related macular degeneration (AMD) not only confirmed a known genetic variant (P value = 2E-6) for AMD, but also revealed an unreported haplotype surrounding single-nucleotide polymorphism (SNP) rs10272438 on chromosome 7 that was significantly associated with AMD (P value = 0.0024). These significance levels are obtained after the consideration for a large number of SNPs. Thus, the importance of this work is twofold: it proposes a powerful and flexible method to identify high-risk haplotypes and their interactions and reveals a potentially protective variant for AMD.


PLOS Genetics | 2011

Genetic association for renal traits among participants of African Ancestry reveals new loci for renal function

Ching-Ti Liu; Maija Garnaas; Adrienne Tin; Anna Köttgen; Nora Franceschini; Carmen A. Peralta; Ian H. de Boer; Xiaoning Lu; Elizabeth J. Atkinson; Jingzhong Ding; Michael A. Nalls; Daniel Shriner; Josef Coresh; Abdullah Kutlar; Kirsten Bibbins-Domingo; David S. Siscovick; Ermeg L. Akylbekova; Sharon B. Wyatt; Brad C. Astor; Josef Mychaleckjy; Man Li; Muredach P. Reilly; Raymond R. Townsend; Adebowale Adeyemo; Alan B. Zonderman; Mariza de Andrade; Stephen T. Turner; Thomas H. Mosley; Tamara B. Harris; Charles N. Rotimi

Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR <60 mL/min/1.73 m2), urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR >30 mg/g) and interrogated the 250 kb flanking region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to 4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B). Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated (UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified 3 suggestive loci at DOK6 (p-value = 5.3×10−7) and FNDC1 (p-value = 3.0×10−7) for UACR, and KCNQ1 with eGFR (p = 3.6×10−6). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish.


Human Molecular Genetics | 2011

Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele

Adrienne Tin; Owen M. Woodward; Wen Hong Linda Kao; Ching-Ti Liu; Xiaoning Lu; Michael A. Nalls; Daniel Shriner; Mariam Semmo; Ermeg L. Akylbekova; Sharon B. Wyatt; Shih Jen Hwang; Qiong Yang; Alan B. Zonderman; Adebowale Adeyemo; C. Palmer; Yan Meng; Muredach P. Reilly; Michael G. Shlipak; David S. Siscovick; Michele K. Evans; Charles N. Rotimi; Michael F. Flessner; Michael Köttgen; L. Adrienne Cupples; Caroline S. Fox; Anna Köttgen

Serum urate concentrations are highly heritable and elevated serum urate is a key risk factor for gout. Genome-wide association studies (GWAS) of serum urate in African American (AA) populations are lacking. We conducted a meta-analysis of GWAS of serum urate levels and gout among 5820 AA and a large candidate gene study among 6890 AA and 21 708 participants of European ancestry (EA) within the Candidate Gene Association Resource Consortium. Findings were tested for replication among 1996 independent AA individuals, and evaluated for their association among 28 283 EA participants of the CHARGE Consortium. Functional studies were conducted using (14)C-urate transport assays in mammalian Chinese hamster ovary cells. In the discovery GWAS of serum urate, three loci achieved genome-wide significance (P< 5.0 × 10(-8)): a novel locus near SGK1/SLC2A12 on chromosome 6 (rs9321453, P= 1.0 × 10(-9)), and two loci previously identified in EA participants, SLC2A9 (P= 3.8 × 10(-32)) and SLC22A12 (P= 2.1 × 10(-10)). A novel rare non-synonymous variant of large effect size in SLC22A12, rs12800450 (minor allele frequency 0.01, G65W), was identified and replicated (beta -1.19 mg/dl, P= 2.7 × 10(-16)). (14)C-urate transport assays showed reduced urate transport for the G65W URAT1 mutant. Finally, in analyses of 11 loci previously associated with serum urate in EA individuals, 10 of 11 lead single-nucleotide polymorphisms showed direction-consistent association with urate among AA. In summary, we identified and replicated one novel locus in association with serum urate levels and experimentally characterize the novel G65W variant in URAT1 as a functional allele. Our data support the importance of multi-ethnic GWAS in the identification of novel risk loci as well as functional variants.


Diabetes | 2013

Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes

Hanieh Yaghootkar; Claudia Lamina; Robert A. Scott; Zari Dastani; Marie-France Hivert; Liling Warren; Alena Stančáková; Sarah G. Buxbaum; Leo-Pekka Lyytikäinen; Peter Henneman; Ying Wu; Chloe Y.Y. Cheung; James S. Pankow; Anne U. Jackson; Stefan Gustafsson; Jing Hua Zhao; Christie M. Ballantyne; Weijia Xie; Richard N. Bergman; Michael Boehnke; Fatiha el Bouazzaoui; Francis S. Collins; Sandra H. Dunn; Josée Dupuis; Nita G. Forouhi; Christopher J Gillson; Andrew T. Hattersley; Jaeyoung Hong; Mika Kähönen; Johanna Kuusisto

Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics–based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI −0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (−0.20 SD; 95% CI −0.38 to −0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: −0.03 SD; 95% CI −0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.


Journal of Bone and Mineral Research | 2013

META-ANALYSIS OF GENOME-WIDE STUDIES IDENTIFIES WNT16 AND ESR1 SNPS ASSOCIATED WITH BONE MINERAL DENSITY IN PREMENOPAUSAL WOMEN **

Daniel L. Koller; Hou-Feng Zheng; David Karasik; Laura M. Yerges-Armstrong; Ching-Ti Liu; Fiona McGuigan; John P. Kemp; Sylvie Giroux; Dongbing Lai; Howard J. Edenberg; Munro Peacock; Stefan A. Czerwinski; Audrey C. Choh; George McMahon; Beate St Pourcain; Nicholas J. Timpson; Debbie A. Lawlor; David Evans; Bradford Towne; John Blangero; Melanie A. Carless; Candace M. Kammerer; David Goltzman; Christopher S. Kovacs; Jerilynn C. Prior; Tim D. Spector; François Rousseau; Jonathan H Tobias; Kristina Åkesson; Michael J. Econs

Previous genome‐wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta‐analyses of these results have identified numerous single‐nucleotide polymorphisms (SNPs) of modest effect at genome‐wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta‐analysis restricted to premenopausal white women from four cohorts (n = 4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age‐ and weight‐adjusted bone‐mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p = 1.7 × 10−9) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p = 1.3 × 10−8) achieved genome‐wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic‐American, and African‐American descent (combined n = 5597 for femoral neck; n = 4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p = 1.3 × 10−11; ESR1/C6orf97 joint p = 1.4 × 10−10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p < 1 × 10−5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period.


Journal of the American Statistical Association | 2010

An Association Test for Multiple Traits Based on the Generalized Kendall's Tau.

Heping Zhang; Ching-Ti Liu; Xueqin Wang

In many genetics studies, especially in the investigation of mental illness and behavioral disorders, it is common for researchers to collect multiple phenotypes to characterize the complex disease of interest. It may be advantageous to analyze those phenotypic measurements simultaneously if they share a similar genetic mechanism. In this study, we present a nonparametric approach to studying multiple traits together rather than examining each trait separately. Through simulation we compared the nominal Type I error and power of our proposed test to an existing test, that is, a generalized family-based association test. The empirical results suggest that our proposed approach is superior to the existing test in the analysis of ordinal traits. The advantage is demonstrated on a dataset concerning alcohol dependence. In this application, the use of our methods enhanced the signal of the association test.


PLOS Genetics | 2012

Genome-wide association of pericardial fat identifies a unique locus for ectopic fat.

Caroline S. Fox; Charles C. White; Kurt Lohman; Nancy L. Heard-Costa; Paul Cohen; Yingying Zhang; Andrew D. Johnson; Valur Emilsson; Ching-Ti Liu; Y.-D. Ida Chen; Kent D. Taylor; Matthew A. Allison; Matthew J. Budoff; Jerome I. Rotter; J. Jeffrey Carr; Udo Hoffmann; Jingzhong Ding; L. Adrienne Cupples; Yongmei Liu

Pericardial fat is a localized fat depot associated with coronary artery calcium and myocardial infarction. We hypothesized that genetic loci would be associated with pericardial fat independent of other body fat depots. Pericardial fat was quantified in 5,487 individuals of European ancestry from the Framingham Heart Study (FHS) and the Multi-Ethnic Study of Atherosclerosis (MESA). Genotyping was performed using standard arrays and imputed to ∼2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of pericardial fat adjusted for age, sex, weight, and height. A weighted z-score meta-analysis was conducted, and validation was obtained in an additional 3,602 multi-ethnic individuals from the MESA study. We identified a genome-wide significant signal in our primary meta-analysis at rs10198628 near TRIB2 (MAF 0.49, p = 2.7×10-08). This SNP was not associated with visceral fat (p = 0.17) or body mass index (p = 0.38), although we observed direction-consistent, nominal significance with visceral fat adjusted for BMI (p = 0.01) in the Framingham Heart Study. Our findings were robust among African ancestry (n = 1,442, p = 0.001), Hispanic (n = 1,399, p = 0.004), and Chinese (n = 761, p = 0.007) participants from the MESA study, with a combined p-value of 5.4E-14. We observed TRIB2 gene expression in the pericardial fat of mice. rs10198628 near TRIB2 is associated with pericardial fat but not measures of generalized or visceral adiposity, reinforcing the concept that there are unique genetic underpinnings to ectopic fat distribution.


Nature Genetics | 2017

Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation

Audrey Y. Chu; Xuan Deng; Virginia A. Fisher; Alexander Drong; Yang Zhang; Mary F. Feitosa; Ching-Ti Liu; Olivia Weeks; Audrey C. Choh; Qing Duan; Thomas D. Dyer; John D. Eicher; Xiuqing Guo; Nancy L. Heard-Costa; Tim Kacprowski; Jack W. Kent; Leslie A. Lange; Xinggang Liu; Kurt Lohman; Lingyi Lu; Anubha Mahajan; Jeffrey R. O'Connell; Ankita Parihar; Juan Manuel Peralta; Albert V. Smith; Yi Zhang; Georg Homuth; Ahmed H. Kissebah; Joel Kullberg; René Laqua

Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10−8; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.

Collaboration


Dive into the Ching-Ti Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline S. Fox

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael A. Nalls

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Boerwinkle

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome I. Rotter

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge